
Software Reengineering
Testing & Refactoring

Martin Pinzger
Delft University of Technology

2

Outline

Legacy dilemma

Testing patterns

Refactoring
Why, when, and how to refactor?

Refactoring examples

Conclusions

3

What we typically do in reengineering?

We are improving the software in some way:
Improve performance

Improve internal structure

As to make future feature requests easier

Improve technologies under the hood

New database, new transaction manager, …

In essence, the end-user experience remains the same

Hey, version 3.0.1
didn’t bring on any

changes! 

Keyword:
behavior preserving

4

What we (don’t) want

Improve the
software
internally

Introduce
bugs in well
working
software

No problem!
We just use the
existing test
suite!

I’m sorry, we
don’t have any
tests 

5

Strategies

Regression tests? Great!
But not if they are at the application level

Unit testing is more efficient

Cover and
Modify

Edit and Pray

6

The Legacy Code Dilemma

When we change code, we should have tests in place

To put tests in place, we often have to change code

More info on how to handle this dilemma in the next lecture
“Working Effectively with Legacy Code”

Testing patterns

8

Tests: Your Life Insurance

Reduce risks posed by reengineering

9

Testing Patterns

Write Tests to Enable Evolution

Grow Your Test
Base Incrementally

Manage tests

Test the Interface,
Not the Implementation

Record Business
Rules as Tests

Design tests

• Test Fuzzy features
• Test Old Bugs
• Retest Persistent Problems

Write Tests
to Understand

Regression Test
after Every Change

Use a Testing
Framework

Organize tests

10

Write Tests to Enable Evolution

Problem: How do you minimize the risks of change?

Solution: Introduce automated, repeatable, stored tests

xUnit Tests

11

Example: JUnit Test Case

public class TestPerson {

 private Person p;

 @BeforeClass

 public static void setUpBeforeClass() { ... }

@AfterClass
 public static void tearDownAfterClass() { ... }

 @Before
protected void setUp() throws Exception {

 super.setUp();

 p = new Person(“Huga Bimbo”);

 }

 @After
protected void tearDown() throws Exception {

 super.tearDown();

 }

 @Test
 public void testGetName() {

 assertEquals(“Name must be Huga Bimbo”, p.getName(), “Huga Bimbo”);
 }
}

12

Write Tests to Understand

Problem: How to decipher code without adequate tests or
documentation?

Solution: Encode your hypotheses as test cases
Exercise the code

Formalize your reverse-engineering hypotheses

Develop tests as a by-product

13

Grow Your Test Base Incrementally

Problem: When to start and when to stop writing tests?

Solution: Grow Your Test Base Incrementally
First test critical components

Business value, likely to change, etc.

Test bugs that have been reported

Keep a snapshot of old system

Run new tests against old system

14

Test the Interface

Problem: How do you protect your investment in tests?

Solution: Apply black-box testing
Test interfaces, not implementations

Be sure to exercise the boundaries

Test scenarios, not paths

Use tools to check for coverage

Beware:

Enabling testing will influence your design!

15

Other Testing Patterns

Retest Persistent Problems
Always tests these, even if you are making no changes to this part of the
system

Test Fuzzy Features
Identify and write tests for ambiguous or ill-defined parts of the system

Test Old Bugs
Examine old problems reports, especially since the last stable release

— DeLano and Rising, 1998

16

Well-Designed Tests
Automation

Tests should run without human intervention

Persistence
Each test documents its test data, actions, and expected results

Repeatability
Tests can run after any change

Unit testing
Tests should be associated with software components

Independence
Each test should minimize its dependencies on other tests (avalanche
effects)

Unit vs. Integration Tests

A test is not a unit test if:
It talks to a database

It communicates across the network

It touches the file system

You have to do things to your environment to run it

e.g., change config files

Tests that do this are integration tests

17

Debugging vs. Testing

18

Debugging	

Sucks

Testing	

Rocks

Refactoring

20

What is Refactoring?

“The process of changing a software system without altering
the external behavior of the code, yet improving its internal
structure.”

Which one is refactoring?
Fixing a bug

Adding threading to improve performance

Renaming method identifiers to improve readability

Refactoring Literature

21

22

Why to Refactor?

Prevent “design decay”

Clean up mess in the code

Simplify the code

Increase readability and understandability

Find bugs

...

When to Refactor?

23

24

When to Refactor?

Rule of Three
If code is replicated three times, it should be extracted into a new
procedure

When you add functionality

When you learn something about the code

When you fix a bug

When the code smells

-> “All the time”

25

When Not to Refactor?

When the tests are not passing

When you have impending deadlines
Cunningham’s idea of unfinished refactoring as debt

26

How to Refactor? - Refactoring Workflow

1. Make sure your tests pass

2. Find some code that “smells”

3. Determine how to simplify this code

4. Make the simplifications

5. Run tests to ensure things still work correctly

6. Repeat the simplify/test cycle until the smell is gone

27

Refactorings

Composing Methods
Extract Method, Inline Method, ...

Moving Features Between Objects
Move Method, Move Field, Hide Delegate, ...

Organizing Data
Replace Data Value with Object, ...

Simplifying Conditional Expressions
Decompose Conditionals, ...

Code Smells (Fowler 1999)

28

Refactorings (Fowler 1999)

29

Refactoring Examples

31

Smell 1: Duplicated Code

Extract Method
Gather duplicated code

Pull Up Field
Move to a common parent

Form Template Method
Gather similar parts, leaving holes

Extract Class
For unrelated classes, create a new class with functionality

32

Smell 2: Long Method

Extract Method
Extract related behavior

Replace Temp with Query
Remove temporaries when they obscure meaning

Introduce Parameter Object
Slim down parameter lists by making them into objects

Decompose Conditionals
Conditional and loops can be moved to their own methods

33

Example: Long Method

public double computePrice() {
	 double totalAmount = 0;
	 foreach (Rental each : rentals.elements()) {	 	 	

	 double thisAmount = 0;
// comp. amounts for each line

	 switch (each.getMovie().getPriceCode()) {
	 	 case Movie.REGULAR:
	 	 	 thisAmount += 2;
	 	 	 if (each.getDaysRented() > 2)

	 	 thisAmount += (each.getDaysRented() - 2) * 1.5;
	 	 	 break;
	 	 case Movie.NEW_RELEASE:
	 	 	 thisAmount += each.getDaysRented() * 3;
	 	 	 break;
	 }
	 totalAmount += thisAmount;

}
return totalAmount;

}

34

Example: Apply Extract Method
public double computePrice() {
	 double totalAmount = 0;
	 foreach (Rental each : rentals.elements()) {	 	 	

	 totalAmount += computePricePerRental(each);
	 }
	 return totalAmount;
}

public double computePricePerRental(Rental aRental) {
	 double thisAmount = 0;
	 switch (aRental.getMovie().getPriceCode()) {	
	 	case Movie.REGULAR:
	 		 thisAmount += 2;
	 		 if (aRental.getDaysRented() > 2)
	 		 thisAmount += (aRental.getDaysRented() - 2) * 1.5;
	 		 break;
	 	case Movie.NEW_RELEASE:
	 		 thisAmount += aRental.getDaysRented() * 3;
	 		 break;
	 }
	 return thisAmount;
}

35

Example: Apply Extract Method 2nd
public double computePrice() { ... }

public double computePriceForRental(Rental aRental) {
	 double thisAmount = 0;
	 switch (aRental.getMovie().getPriceCode()) {	
	 	case Movie.REGULAR:

thisAmount = computePriceRentalRegularMovie(aRental); break;
	 	case Movie.NEW_RELEASE:

thisAmount = computePriceRentalNewRelease(aRental); break;
	 }
	 return thisAmount;
}

public double computePriceRentalRegularMovie(Rental aRental) {
 double thisAmount = 2;
 if (aRental.getDaysRented() > 2)
 thisAmount += (aRental.getDaysRented() - 2) * 1.5;
 return thisAmount;
}

public double computePriceRentalNewRelease(Rental aRental) {
 return aRental.getDaysRented() * 3;
}

36

Smell 3: Divergent Change

“If you find yourself repeatedly changing the same class then
there is probably something wrong with it.“

Extract Class
Group functionality commonly changed into a class

37

Smell 4: Feature Envy

“If a method seems more interested in a class other than the
class it actually is in.”

Move Method
Move the method to the desired class

Extract Method
If only part of the method shows the symptoms

Example: Feature Envy

38

public class CapitalStrategy…
public double capital(Loan loan) {

if (loan.getExpiry() == null && loan.getMaturity() != null) {
return loan.getCommitment() * loan.duration() * loan.riskFactor();

}
if (loan.getExpiry() != null && loan.getMaturity() == null) {

if (loan.getUnusedPercentage() != 1.0) {
return loan.getCommitment() * loan.getUnusedPercentage() *

loan.duration() * loan.riskFactor();
} else {

return (loan.outstandingRiskAmount() * loan.duration() * loan.riskFactor())
 + (loan.unusedRiskAmount() * loan.duration() * loan.unusedRiskFactor());

}
}
return 0.0;

}
 ...
}

39

Comments

Often are a sign of unclear code (smell)...

Not necessarily bad but may indicate areas where the code is
not as clear as it should be

Extract Method

Introduce Assertion

More Smells & Refactorings

40

Smell Refactorings

Large Class
Extract Class, Extract Subclass, Extract Interface, Replace Data Value with
Object

Shotgun Surgery Move Method, Move Field, Inline Class

Long Parameter List
Replace Parameter with Method, Introduct Parameter Object, Preserve
Whole Object

Data Class Move Method, Encapsulate Field, Encapsulate Collection

Refactoring Exercise

Refactoring the Movie Rental Application

Download the source code from the Reengineering web-site

Import the Eclipse project

Refactor the “Bad Smells” that you find in the current release

Remember to add tests first!

42

Potential Solution?

43

-priceCode : int

Movie

+getCharge (days: int): double

+getCharge (days: int): double +getCharge (days: int): double+getCharge (days: int): double

Regular Movie Childrens Movie New Release Movie

Solution with State Pattern

44

Price

Regular Price

+getCharge(days: int): double

Childrens Price New Release Price

Movie

return
price.getCharge (days)

+getCharge(days: int): double +getCharge(days: int): double

+getCharge(days: int): double

1*

+getCharge(days: int): double

Solution after Refactoring

45

Rental

-daysRented: int

+getCharge(): double
+getFrequentRenterPoints(): int

Customer

+statement()

+getTotalCharge(): double
+getTotalFrequentRenterPoints(): int

+htmlStatement()

Price

Regular Price

+getCharge(days: int): double

Childrens Price New Release Price

Movie

+getCharge(days: int): double +getCharge(days: int): double

+getCharge(days: int): double

1*

+getCharge(days: int): double

-price: Price

+getFrequentRenterPoints(days: int): int +getFrequentRenterPoints(days: int): int

+getFrequentRenterPoints(days: int): int

+getDaysRented(): int

*

1

*

46

Problems with Refactoring

Taken too far
Refactoring can lead to incessant tinkering with the code, trying to make
it perfect

Refactoring code when the tests don’t work
Leads to potentially dangerous situations

Databases can be difficult to refactor

Refactoring published API can break client code

47

Why Developers are Reluctant to Refactor?

Lack of understanding

Short-term focus

Not paid for overhead tasks like refactoring

Fear of breaking current program

48

Rules of Thumb to Refactoring

Refactoring may slow down execution
But: “First do it, then do it right, then do it fast”

Clean first, then add new functionality

Do not meddle with things you do not understand to a large
extent

Summary

Refactoring is improving the source code without changing
the behavior of the system

Refactor all the time
Make sure you have tests in place

49

