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Abstract

Code clones have long been recognized as bad smells in software systems and are assumed to cause
maintenance problems during their evolution. We can identify these problems by the examination
of change coupled files. It is broadly assumed that the more clones two files share, the more often
they have to be changed together. This connection between clones and change couplings has been
postulated but neither demonstrated nor quantified yet. However, it simplifies the identification
of code clones which are suitable candidates for refactoring.
In this thesis we examine if a correlation can be verified. Using a newly developed framework

we examine the code clones and change couplings of a large software system and attempt to
correlate these measurements. The results obtained are statistically ambiguous making a fully
automated selection process impossible. A different amount of code clones does not necessarily
lead to a related difference in the number of change couplings. A decision about if and when to
refactor a code clone cannot be based on its presence or size alone. We therefore propose a set
of metrics and a visualization technique allowing the software engineer to base her decisions on
more sophisticated information.





Zusammenfassung

Duplizierungen im Quelltext eines Software–Systems sind schon lange als bad smells bekannt und
man nimmt an, dass sie zu Problemen während der Evolution des Systems führen. Wir können
solche Probleme daran erkennen, dass gewisse Dateien oft gemeinsam geändert werden müssen.
Man nimmt an, dass je mehr Quelltext zwei Dateien gemeinsam haben, desto öfter sie auch
gekoppelt geändert werden müssen. Eine solche Beziehung zwischen Klonen und Änderungs-
kopplungen wurde bisher postuliert, aber nicht nachgewiesen. Wäre eine solche Quantifizierung
jedoch möglich, so würde sie die Identifizierung von Klonen vereinfachen, welche sich als Kan-
didaten für ein Refactoring anbieten.
In dieser Arbeit untersuchen wir, ob eine solche Beziehung nachgewiesen werden kann. Mit

Hilfe eines neuentwickelten Ansatzes untersuchen wir Klone und Änderungskopplungen und
versuchen diese Messwerte in Beziehung zu setzen. Die Resultate, welche wir erhalten haben,
sind statistisch nicht eindeutig. Eine Änderung der Grösse der Klone führt nicht zwingend zu
einer Anpassung der Anzahl von Kopplungen. Allein aufgrund der Präsenz oder Länge eines
Klons kann deshalb nicht entschieden werden, ob und wann er mittels Refactoring entfernt wer-
den sollte. Deshalb schlagen wir eine Reihe von Metriken und eine Visualisierungstechnik vor,
welche es einem Software–Ingenieur erlauben, diese Entscheidung auf eine beitere Basis an In-
formationen abzustützen.
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Chapter 1

Introduction

Begun the clone war has.

Master Yoda, Star Wars Episode 2

Code clones are regarded as a major bad smell in a software system. This thesis will explore how
prominent their impact on the evolution of a large software project is.

1.1 Setting the Scene
This thesis touches several fields of research in software engineering. Some of these have been
known and treated for years while others are still relatively new. So far the correlations between
these different fields have not been explored fully. This is attempted in this thesis.

1.1.1 Bad Smells and Code Clones
Martin Fowler has introduced the concept of a bad smell in [FBB+99]. A bad smell is a warning
sign about potential problems in source code [Wak03]. These indicators suggest the possibility of
refactoring if they are detected. They do, however, not give a precise set of metrics which tell the
engineer just when to start refactoring a system.
Duplicated fragments of source code - referred to as code clones - are a prominent and well

researched kind of a bad smell. In fact, Fowler refers to duplicated code as the “number one in
the stink parade”. This quote gives an idea of how important he suggests that code clones are.
Several methods and tools for detecting code clones have been proposed and are discussed in
detail in Chapter 2.
Code duplication is often cited as one of the major smells and a system containing a large

proportion of duplicated code is considered to be difficult to maintain. There are different forms
of code clones: syntactic or semantic duplication. As semantic equivalence is hard to detect, most
of the available clone detection tools focus on finding syntactic duplications. It is estimated that
normal industrial source code contains 5 – 20 % of duplicated fragments [MLM96].
Code clones have several unwanted consequences on the system. Generally the code is bloated

unnecessarily. More code leads to more possibilities for introducing defects into the system. The
introduction of dead code is not really needed for the system to perform its functionality can also
be a consequence. The work necessary for changing any part of the system is increased according
to the larger volume of code [LB85].
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1.1.2 Software Evolution and Maintenance
The development of a software system is usually not finished when the first version is released.
The evolution of a software system continues after this initial delivery. Changes and improve-
ments are necessary during the maintenance phase of its lifetime [LB85]. There is no standard
definition of software evolution but evolution in general can be defined as

a process of continuous change from a lower, simpler, or worse to a higher, more
complex, or better state. [GT03]

Software maintenance is the main driver of behind the evolution of a system after its initial de-
velopment. It is defined in IEEE Standard 1219 as

The modification of a software product after delivery to correct faults, to improve
performance or other attributes, or to adapt the product to a modified environment.
[IEE93]

The financial impact of maintenance is grave – the costs of changes carried out after delivery are
estimated at 40 – 70 % of the total costs during a system’s lifetime [GT03]. Any reduction of the
maintenance and evolution effort of a software system is therefore highly desirable.

As bad smells are mostly indicators for maintainability problems of the source code, they
lose their significance if the system remains stable and is never changed after its initial release.
Unfortunately software systems which are actively being used to solve problems in the real world
are never completely stable during their lifetime. Lehman postulated this already in 1985 [LB85].
He formulated a number of laws, some of which explain why software has to evolve:

• Law of continuing change: Systems must be continually adapted or they become progres-
sively less satisfactory to use.

• Law of increasing complexity: As a system evolves, its complexity increases unless work is
done to maintain or reduce it.

• Law of continuing growth: Functional capability must be continually increased over a sys-
tem’s lifetime to maintain user satisfaction.

• Law of declining quality: Unless rigorously adapted to meet changes in the operational
environment, system quality will appear to decline.

Basically, a system has to evolve so that its users remain satisfied. Negative effects of these neces-
sary changes include increasing complexity and decreasing understandability. To counter them,
the resulting bad smells must be detected during the system’s lifetime. This detection forms a
first step to correct such problems through refactoring. In this case the postulated negative influ-
ence of code clones on the software’s maintainability comes into play. Code duplication increases
the workload for changes and cloned code drastically reduces the understandability of the code.
Thus, code clones are a major factor that must be considered during the evolution of a system.

An expression of maintainability problems during the evolution of a system are change cou-
plings. The definition of a change coupling simply implies that two files are coupled by being
changed at the same time [GHJ98]. If such couplings occur only sporadically, they do not present
a major problem. If on the other hand two files are changed together during the whole evolution-
ary process, a refactoring should probably be considered.

Code clones comprise a major bad smell. A significant correlation between code clones and
change couplings has been assumed for some time now. We therefore expect that changes in
the amount of duplicated code fragments should be followed by an observable change to the
couplings between two files.
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1.2 Goal

1.2.1 Research Goal
In this thesis, we cover the question whether a correlation between code clones and the presence
of change couplings exists or not.

The detection of code clones has been a research topic for a considerable time since the pres-
ence of duplicated code was identified as one of the main bad smells a software system can con-
tain. More recently, further smells have been described, which affect systems not only during
their initial development but rather during their evolution over time.

If such a correlation can be derived from the data obtained in a large system, code clone de-
tection could be used to predict future maintenance problems. Even if there is no systematic cor-
relation between code clones and change couplings, problematic areas in the source code could
be better identified when those two examination techniques are combined. Code duplications
suitable for refactoring could be more effectively identified by using the two methods together.
The historical data enriches the clone detection and helps to decide whether to refactor or not.

To find an answer to this research goal, we apply code clone detection tools to different releases
of a large software system. We then compare the results of this analysis with data collected about
the evolutionary and change behavior of the same system to see if the occurrence of duplicated
source code and couplings between different files are correlated.

While answering the research question, we use different tools and give an evaluation of their
applicability to this task.

In summary, the research goal is to develop a way of correlating code clone and change cou-
pling data so that we can give more precise conclusions about the evolutionary behavior of a
system.

It is widely accepted that code clones pose a major problem during the evolution of a system.
We were therefore surprised at how inconclusive this correlation turns out be in our case study.

1.2.2 Case Study: The Mozilla Project
To validate our approach, we selected as a case study the open source Mozilla project web brow-
ser. Its entire source code is available in a CVS repository. The system has already been used in
several software evolution and change coupling studies [FPG03, FGP05].

The first milestone release of this project occurred in early 1999 while the most recent release
is available since September 21st, 2005.

For this thesis seven releases have been selected, starting with release 0.9.2 (June 28th, 2001)
and finishing with 1.7 (June 17th, 2004). The releases considered are each separated from the next
by an interval of about six months.

One advantage of the Mozilla project is the presence of clearly defined software modules al-
lowing to reduce the complexity of the clone detection process. Furthermore, a large part of the
system is written in the C/C++ programming languages supported by most clone detection tools.

Table 1.2.2 shows an overview of the seven releases considered with the respective number of
C/C++ files (NOCF) and the lines of code within these files (LOCC).We do not use all of these
files in the development of this thesis.

1NOCF: number of C/C++ files.
2LOCC: lines of C/C++ code including blank lines and comments as these lines are also processed by a detection tool.
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Release Date NOCF1 *.h *.c *.cpp LOCC2

0.9.2 June 28th, 2001 11,619 6,171 1,600 3,848 3,306,470
0.9.7 December 21st, 2001 11,945 6,385 1,653 3,907 3,518,502
1.0 June 5th, 2002 11,191 5,259 1,970 3,962 3,868,403
1.3a December 13th, 2002 13,314 7,342 1,824 4,148 3,924,442
1.4 June 30th, 2003 13,646 7,599 1,849 4,198 3,986,846
1.6 January 15th, 2004 13,260 7,505 1,563 4,192 3,835,584
1.7 June 17th, 2004 13,563 7,681 1,579 4,303 3,913,042

Table 1.1: Mozilla releases considered in the case study.

1.3 Structure of the Thesis
Chapter ?? presents related work that has been done in the area of code clone detection and the
impact of these duplications to the evolution of software ; Section ?? presents the fra. We then
introduce the theoretical background of the framework by which we examine the Mozilla case
study in Chapter 4. The application of this framework is covered in Chapter 5. In Chapter 6 we
summarize the thesis by presenting its contribution, lessons learned, and we raise questions for
future work.



Chapter 2

State of the Clone

In this chapter we give an introduction to the terminology and approaches to code clone detection.
We describe seven different techniques and implementations. The effect of code duplications on
the evolution of a software system is shortly covered. Finally we describe the two most common
visualization techniques used in clone detection tools.

2.1 Definitions
The literature currently gives no precise and consistent definition of what a code clone actually is.
This section therefore defines the expressions used in the context of this paper.

Definition 1 (Code Clone) A code clone is a piece of replicated source code that offers duplicate or near
duplicate functionality. [LPM+97, BB02]

This definition is neither precise nor conclusive due to the lack of a suitable metric to measure
the similarity of two functions. Whether or not two sections of a software system are considered
a clone pair often depends on the point of view. The following definition can be considered as
more practical – yet even less precise.

Definition 2 (Code Clone) A code clone is a piece of replicated source code that has been detected by a
clone detection tool, and that the user identifies as a clone.

The latter definition takes into account the assessment of a software engineer using a given clone
detection tool. The introduction of detection tools also implies the definition of some additional
terms.

Definition 3 (Candidate) A candidate is a possible clone reported by a detection tool.

Definition 4 (False Positive) A false positive is a reported candidate that is not a clone.

Definition 5 (False Negative) A false negative is a clone that is not reported.

The problems caused by false negatives are more difficult to solve than those based on false pos-
itives. To identify a false negative it would be necessary to know all duplications in the source
code. If that was known, a clone detection tool would not be needed. In our case study, we were
therefore able to eliminate certain false positives but no false negatives.
By definition, a code clone is always involving more than one fragment of source code. This

leads to
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Definition 6 (Clone Relation) A clone relation is defined as an equivalence relation on code fragments.
It holds between two code sections if and only if they are the same sequences. [KKI02]

Definition 7 (Clone Pair) A clone pair is a pair of code fragments between which the clone relation holds.
[KKI02]

In reality, code clones often cover more than two different pieces of source code. The following
definition therefore introduces the clone class.

Definition 8 (Clone Class) A clone class is a set of code fragments that have been created by copying and
possibly modifying each other. This set is not ordered. The clone relation holds between any tuple of code
fragments in the set.

Even though there are very different approaches to identify code clones, most of them use a
common vocabulary defined for the most part at the First International Workshop on Detection
of Software Clones in October 2002, which was held in conjunction with ICSM ’021 and SCAM
’022. These terms are essential to discuss the effectiveness of the different methods for detecting
clones.

Definition 9 (Recall) The recall is the ratio between the number of real clones among the reported candi-
dates and the number of clones that are in the system.

Recall(P, T ) =
RealClonesReported(P, T )

Clones(P )

where:
P = Input source code and
T = Clone detection tool

Definition 10 (Precision) The precision is the ratio between the number of real clones among the reported
candidates and the total number of reported candidates.

Precision(P, T ) =
RealClonesReported(P, T )

Candidates(P, T )

where:
P = Input source code and
T = Clone detection tool

Recall is therefore a metric for the amount of discovered duplicates while precision measures the
number of false positives. There is usually a trade-off between recall and precision.

Definition 11 (Clone Coverage) Clone coverage is defined as the ratio between the length of cloned code
fragments and the total lines of code in a file, class, or other source code entity.

This definition of coverage is not entirely unambiguous.It is not specified if the total lines of code
include lines that contain no information for the compiler (e.g., blank lines or comments). It is
also not clear how many source code entities are affected by a given clone class. In this thesis,
comments and blank lines are not included in the total lines of code. Duplications are always
considered to hold between exactly two entities – in this case those entities are C or C++ files.

1IEEE International Conference on Software Maintenance 2002 in Montréal, Canada.
2Second IEEE International Workshop on Source Code Analysis and Manipulation 2002 in Montréal, Canada.
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2.2 Approaches to Code Clone Detection
Detecting duplicated source code is not trivial. Cloned code fragments often undergo small
changes like renaming of certain variables or the introduction of additional code into one of these
fragments. Therefore simple string-matching is usually not powerful enough to be of any use. In
the following sections we describe several more sophisticated approaches.
During the last years several approaches to detect code clones have been proposed. Generally

speaking, these methodologies can be categorized into four different solutions:

• detection based on lexical analysis [Bak92, RD98, KKI02],

• on source code metrics [MLM96],

• on an abstract syntax tree representation of the system [BYM+98],

• on isomorphic program dependence graphs [Kri01].

2.2.1 Dup
Baker proposed her approach to clone detection in 1992 [Bak92, Bak93]. This makes it the earliest
clone searching approach considered in this paper. Later approaches often sharemany similarities
with her tool. It can therefore be considered the direct ancestor of most later approaches.
Her method has been implemented with a tool calledDup. Clones are most often introduced

by “copy–paste–change” programming. Therefore, the subsequent code duplications are often
line-by-line copies. Consequently Dup uses a line-based approach when searching for clones.
White spaces and comments are eliminated and the resulting normalized lines are compared.
Normalized lines are considered to be a clone if the sequence of characters is the same in both.
Baker does not consider the semantics of the program being checked for clones in her approach.
The tool also allows the detection of imperfect matches by parameterizing the query. Allowed

parameters are for example the names of variables, constants, or methods. A one-to-one relation
between parameters is still required.
Dup creates an output of “longest match” strings, meaning that the longest possible fragments

of cloned source code are returned. To avoid getting too short – and therefore uninteresting –
duplications, a minimal length can be specified. The tool can visualize the results in a dot plot
graph to simplify their comprehension.

2.2.2 Duploc
Duplocwas first presented in 1998 [RD98, DRD99] with the intention of offering a clone detection
tool supporting both visual exploration and automatic detection. Detection and visualization was
often divided into several tools in earlier approaches. Duploc is available under the GNUGeneral
Public License3.
Duploc searches for clones by using a line based approach, which makes it possible to adapt to

new programming languages4. Thus, Duploc can for practical reasons be considered as language-
independent.
Code clone detection works in three steps. First, each source code fragment is normalized by

removing comments and white spaces. One line has been chosen as a suitable size because most
important code duplications include several lines. It also allows to keep the algorithm as simple

3http://www.iam.unibe.ch/˜rieger/duploc/
4Duploc so far supports C, C++, Cobol, Eiffel, Java, Pascal, Assembler, Perl, Python, and Smalltalk.
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as possible. To further reduce the amount of irrelevant code clones found, common language-
specific statements, such as break; or int i; in C – are eliminated.

In a next step, the normalized lines of source code are compared to each other by string match-
ing. If the two lines in a pair are cloned, they are assigned a boolean true. These values are then
stored in a matrix. The coordinates are determined by their line indices. The necessary compar-
isons lead to a complexity of Ω(n2) where n is the number of compared files. In order to reduce
this complexity and therefore increase the scalability of the tool, a further optimization step is
introduced. After the initial normalization of the source code, the resulting strings are hashed
into B buckets and only the possible tuples in one bucket are compared by string matching. Since
identical lines are hashed into the same cluster, no false negatives are introduced. The complexity
is reduced by the factor B.

The last step consists of the visualization of the results. As in Baker’s Dup, the clone pairs are
displayed in the form of a scatter plot directly derived from the matrix created in the last step.
A boolean value of true will result in a dot in the appropriate place of the plot allowing the user
to detect certain patterns. To cope with the possibility of some changed code within a clone pair
(represented as a broken diagonal line in the scatter plot), a pattern matcher is run on the diagram
that allows for a certain degree of change – e.g., renamed variables.

2.2.3 CCFinder
CCFinder is currently considered as a state of the art clone detection tool. It was first described in
[KKI02] and is still being actively developed. A new version is expected shortly after this thesis
is finished5.

The main motivation for the development of CCFinder was the need for a tool applicable
to a million-line sized software system with affordable complexity of computation. Another re-
quirement was a relatively small language dependent part making the tool adaptable to other
languages.

The clone detection approach is based on the transformation of the source code to a sequence
of tokens and the subsequent analysis of these tokens instead of the raw source code.

First, the source code is lexically analyzed. CCFinder breaks every line of code down into a
sequence of tokens by applying language specific information about keywords and other con-
ventions. The tokens are identifiers as well as keywords and symbols with a semantic meaning.
All sequences are then concatenated. During this step, white spaces and comments are removed.
These suppressed tokens however are kept in memory for the later formatting of the result.

Second, CCFinder transforms the generated token sequence according to language specific
rules. For instance, the transformation rules for C++ are given in Table 2.1. These rules aim at
a regularization of identifiers (rules RC1 and RC2) and an identification of structures (RC3 and
RC4). Identifiers relating to types variables and constants are replaced with a symbolic token,
making the detection of clones with altered naming possible.

Rule Description
RC1
(Remove name space at-
tribution)

(Name1’::’)+Name2 !→ Name2
Here, the operator+, a postfix operator of regular expressions,
means a repetition of one or more times. in C++ source files, a
name may belong to a name space or a class and can be spelled
in full or in shorter form. The transformation is to neglect the
attribution so they are considered equivalent in clone detection.
Ex. std::ios_base::hex is transformed into hex.

5http://www.ccfinder.net
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Rule Description
RC2
(Remove template
parameter)

Name ’<’ParameterList’>’ !→ Name
Here, ParameterList is a sequence of Name, Number, String, Op-
erators, ’,’ and Expression. Expression is a sequence of tokens
which starts with ’(’ and ends with a corresponding ’)’ and does
not include ’;’.
Template arguments may be omitted because of a type estima-
tion by the compiler or because of the scope of the template. The
transformation copes with the case. Ex. sort<int> is trans-
formed into sort.

RC3
(Remove initialization
lists)

’=’ ’{’InitializationList,’}’!→ ’=’ ’{’UniqueIdentifier’}’
Here, InitializationList is a sequence of Name, Number, String,
Operators, ’,’, ’(’. ’)’, ’{’ and ’}’. UniqueIdentifier is a unique
token which never appears in another place of a token sequence.
Some tables (such as character code, color code and wave tables)
include a continuation of a value and regular repeats of some
values. The rule eliminates such large table initialization codes.

RC4
(Separate function defini-
tions)

Insert UniqueIdentifier at each end of the top-level definitions
and declarations.
This rule prevents extraction of clone pairs of the code portions
that begin in the middle of a function and end in the middle of
another function definition.

RC5
(Remove accessibility
keywords)

AccessibilityKeyword !→ Φ
Here, Φ is a null sequence. Ex. protected: void foo(); is
transformed to void foo();.

RC6
(Convert to compound
block)

Each single statement after if(), do, else, for() and while() is
transformed to a compound block.
Ex. if (a==11) b=1; transforms to if (a==1) {b==2;}.

Table 2.1: CCFinder transformation rules for C++. [KKI02]

After these transformations, the actual match detection is carried out. Clone pairs are detected
from all the subsequences of a minimum length defined by the user. The location of clone pairs is
stored by their location in the token sequence.
Finally, the location of clones is converted back to line and column numbers of the original

input source code.
In [UKKI02] a graphical user interface called Gemini is presented which effectually adds a

fifth step to the clone detection process. The program offers further possibilities supporting soft-
ware maintenance. Gemini offers visualization, metrics, and source code browsing capabilities.

2.2.4 CloneDRTM

CloneDR is the only commercial clone detection tool that is considered in this thesis6 and forms
part of a larger software maintenance platform platform called DMS. The approach has first been
described by Baxter et al. [BYM+98].
Basically, CloneDR first parses the input source code and generates an abstract syntax tree.

After that, three consecutive algorithms are applied to detect clones with increasing granularity.

6The trademark is held by Semantic Designs, Inc. (http://www.semdesigns.com).
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The first detection algorithm is concerned with finding duplicated sub-trees. In order to find
matching candidates even if they contain some variation, the sub-trees are not checked for equal-
ity but rather for similarity. The user can define the degree of similarity. A problem that arises is
the scalability of this approach. It is not efficient to compare every sub-tree with every other to
detect clones. Therefore, the sub-trees are first categorized using a hash function that orders sim-
ilar sub-trees into the same buckets. Only the candidates contained in the same bucket now have
to be compared with each other, reducing the computational complexity to the order of Ω(N),
with N being the number of nodes in the AST. To solve the problem that n sub–trees containing
small variations would end up in different buckets because of a good hash function, an artificially
bad function is used. This function has to take into account that most clones are created by copy-
ing and pasting the relevant code fragments followed by some small local changes. Therefore,
the hash function is designed to ignore small sub-trees which represent these modifications. The
similarity of two trees is determined with the following formula:

Similarity =
2 · S

2 · S + L + R

where:
S = number of shared nodes
L = number of different nodes in sub-tree 1
R = number of different nodes in sub-tree 2

This calculated similarity is compared with the user-specified threshold to determine the hash
bucket for each sub-tree. This first algorithm is purely syntax-driven.

The second detection algorithm is designed to detect clones involving certain recurring frag-
ments like sequences of declarations and statements. In an AST, such sequences show up as
heavily left- or right-leaning trees with a common sequencing operator at their root. The algo-
rithm used returns only the longest sequence and ignores the rest. This reduces the number of
clone candidates but increases their average size.

The third algorithm attempts to generalize the clones detected in the first step and filtered in
the second. This generalization is achieved by examining the parent nodes of detected sequence
clones. If the parent nodes are similar enough, they are considered to be a generalized clone of
the following sub-sequences and the former sequences can be replaced by their parents.

Compared to the clone detection tools based on lexical analysis described earlier, this approach
sets higher requirements to the parser which constructs the initial AST. An adaption to different
programming languages is therefore difficult to achieve.

CloneDR allows the visualization of the results as well as an automatic replacement of the
clones found in a system. An evaluation copy with limited functionality is available for down-
load7.

2.2.5 Duplix
Duplix was introduced by Jens Krinke and uses an approach unlike the tools mentioned before
[Kri01]. The goal of this approach was to create a clone detection tool that does not suffer from the
usual trade–off between recall and precision. This goal has however not been achieved as later
studies show [Bel02].

The identification of duplicated fragments of source code is based on finding similar sub-
graphs in a fine–grained program dependence graph (PDG). The approach therefore considers
not only the syntactic structure of the input, but also the data flow. Basically, the graph’s ver-
tices represent assignment statements and control predicates in the input code. The edges show

7http://www.semdesigns.com/Products/Clone/
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dependences between different components of the program and describe either a data or control
dependency. A data dependence edge from vertex v1 to v2 signifies that component v1 assigns a
value to a variable used by v2. A control dependency means that if the component represented by
v1 is evaluated to a certain value, v2 is executed. This value is modeled as an attribute of the edge.
Krinke extends this traditional definition of a PDG by adding elements of ASTs. AST vertices
are mapped nearly one-to-one to their PDG counterparts. Furthermore, they get three attributes:
class (statement, expression, procedure call etc.), operator (binary expression, constant etc.) and
value (the exact operator). The model is further enhanced by special dependence edges between
various classes of vertices.
Clones are now detected by finding similar sub-graphs of the PDGs generated from the input.

Two paths are considered to be similar if there exists for every path v0, e1, v1, e2, . . . , en, vn in one
graph a path v′

0, e
′
1, v

′
1, e

′
2, . . . , e

′
n, v′n in the other graph and the attributes of the vertices and edges

are identical. To find these possible similar sub-graphs would require a complexity ofΩ(V )where
V is the number of vertices. In an attempt to reduce computational costs, only a subset of all
vertices are considered as starting points. To select these vertices, Krinke uses predicate vertices
in order to find clones regardless of their placement in specific functions. The constructed sub-
graphs are then weighted (the criterion is the number of data dependence edges in the graph).
The prototype implementation of this approach currently supports only ANSI C. Due to the

complexity of the data flow analysis, there is also a limit to the size of the input code8. Originally
the tool has only been tested with up to 25,000 lines of code – in later experiments it processed
input sizes of up to 115,000 lines.

2.2.6 CLAN
Merlo et al. propose an approach to clone detection based on source code metrics [MLM96,
LPM+97]. The initial goal of the project was the identification of student assignments which
“were sharing too much of their software projects”.
The approach uses a set of defined metrics to find clones in programs written in procedural

programming languages. To get the required metrics, a source code analyzer tool set – DatrixTM–
is used. As a first abstraction Datrix creates an AST representation of the input source code. This
tree is then converted into an Intermediate Representation Language (IRL) for further processing.
This two-step transformation is necessary for the support of several different input languages.
The IRL contains information about architecture, static data type, control flow, and data flow of
the input. Metrics generated on the last two categories of information are of particular interest for
this clone detection approach.
The scope of detected clones in this approach are only complete functions with equivalent or

similar functionality. The maximum amount of cloned functions in a system is therefore n·(n−1)
2

where n is the number of functions in the input code.
The approach considers four points of comparison when detecting clones:

1. Name,

2. Layout,

3. Expressions, and

4. Control flow.

First the names of the functions tested for clones are compared. Two functions bearing the same
name – even across component borders – are considered to be likely candidates for code duplica-
tion. This step does not yet include the use of any further source code metrics.

8In fact, the limit is on the number of similar sub-graphs, which is however unknown before the tool is run.
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Next, the layout – here defined as the visual organization of the source code – of the two
functions is compared. Various metrics are applied to comments, lines of code, and variable
names.

The third step is concerned with the expressions within the function. Their number, nature,
and complexity are considered and mapped to five different metrics.

In a final step, the control flows of two functions are compared. First the number of nodes
and arcs in the different graphs are compared. To this comparison information about loops and
decisions in the program is added. Eleven distinct metrics measure the control flow.

A total of 21 different metrics are available in the steps described above. The user specifies
which combination of these metrics is used. The selected metrics are then compared for any two
functions. Functions are considered equal in a certain point of comparison if the respective values
of the metrics are equal. They are similar if the difference between the two values is smaller than
a predefined delta value. The totality of all metrics together serves to determine the level of
code duplication between two functions. This approach defines an ordinal scale of eight levels of
cloning according to the four steps during clone detection:

1. ExactCopy,

2. DistinctName,

3. SimilarLayout,

4. DistinctLayout,

5. SimilarExpression,

6. DistinctExpression,

7. SimilarControlFlow, and

8. DistinctControlFlow.

In [MLM96] the application to two case studies is described. These consist of between 6,645 and
7,146 functions (485,433 and 506,823 lines of code). A definition of the metrics used in clone
detection can be found in the same paper.

2.3 Code Clones and Evolution
So far, less work has been done in the research of code duplications in relation to the evolution of
the corresponding system. The general understanding is that code duplications represent a major
bad smell [FBB+99] and often lead to problems with the maintainability of a software system (and
therefore to higher maintenance costs). For that reason, they should be removed from the system
by appropriate refactoring techniques as described by Fowler.

In [KSNM05] Kim et al. examine the evolution of code clones over several versions of a soft-
ware system. A possible connection between duplications and subsequent couplings between
several files is however not discussed. They introduce amodel to classify clone genealogies which
is similar – but more comprehensive – than the attempt of clustering duplicates used later in this
paper. They postulate that in many cases clones are not inherently bad and should therefore be
left in the system. They argue that a number of duplications only remain in a system for a short
time and are not worth the trouble of a major refactoring effort. On the other hand, older clones
are often so well established that they are not refactorable anymore. If this train of thought is
followed to its end, one could conclude that clones should never be refactored at all as they are
always either too young or too old to be suitable candidates.
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This thesis intends to develop a way of discerning between code clones whose removal could
benefit the system, and duplications that can safely be left alone. It is not intended to provide a
general answer if clones should be refactored at all.

2.4 Visualization of Code Clones
There are two main approaches to the visualization of code duplications which are being used
by the majority of the clone detection tools discussed before. Most detection tools – if they offer
any visualization at all – use both methods simultaneously. The two visualization techniques are
source code highlighting and dot plots9.

2.4.1 Source Code Highlighting
Source code highlighting is a very simple visualization technique. Nevertheless it conveys essen-
tial information that for example a dot plot cannot display.

Figure 2.1: Example for visualization by source code highlighting in Gemini.

The basic principle is that the source code fragments containing clones are displayed at the
same time. The cloned fragments are highlighted by the use of a different background color.
Figure 2.1 shows an example of an output created by CCFinder’s graphical user interface Gemini.
Different hues of a color are used to indicate source code fragments that are cloned more than

9The term “scatter plot” is used as a synonym.
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once. In the example, the darker colored piece of code in the file numbered 1.1 is cloned up to
three times in the other file.

Visualization by source code highlighting is very successful in showing clearly defined frag-
ments of clone candidates. It can be used for the classification of the candidates reported by a
detection tool into real clones and false positives. If the fragment is a true duplication, the high-
lighted code can be further examined to determine the extent of cloning and possible changes
(e.g., renaming of variables or methods) made during the cloning process.

Source code highlighting has its limitations. It is not a visualization useful for giving an
overview of all clones in a system. Its scope is usually limited to two files a time.

2.4.2 Dot Plots
The second major visualization technique for code clones is the dot plot10. This method has been
used in nearly all detection tools starting with Baker’s Dup [Bak92] and is since then the standard
visualization in this field.

Figure 2.2: Example for visualization by dot plot in Gemini.

The basic principle of the dot plot visualization is that of a matrix. The lines of code11 of the
files that are compared form the two dimensions of the matrix. If lines X of file A and Y in file
B contain a match, the dot plot contains a dot at coordinate (A.X ; B.Y ) as indicated in Figure
2.2. The origin of the coordinate system is usually in the upper left corner (except in Baker’s Dup
where it is located in the lower left corner).

The dot plot visualization is very useful when the goal is to get an overview of the code clone
situation in more than two files. This technique is also applicable for very large inputs. During
our case study of the Mozilla web browser, it has been used to gain an overview of complete
releases of Mozilla with close to 4 million lines of code in several thousand files.

10The term scatter plot is used as a synonym for dot plot in this thesis.
11Criteria other than LOC (e.g., tokens or statements) can also be used. The standard in the examined tools is LOC.
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The strength of the dot plot visualization lies in the occurrence of recurring and recognizable
patterns signifying certain qualities of a detected clone candidate. These patterns are described
in [RD98].
The simplest pattern can be observed in Figure 2.2. Longer cloned fragments are displayed as

diagonal lines in the plot. When a file is compared to itself, it is by definition a perfect clone of
itself. Therefore a diagonal line stretches from the upper left to the lower right corner. This, for
example can be seen in Figure 2.2 where file A is compared to itself in the upper left square. The
same applies to file B in the lower right corner.

Figure 2.3: Dot plots showing clones with changes on certain lines (a) and with inserted and deleted lines (b).

Disconnected diagonal lines as shown in Figure 2.3(a) stand for cloned code fragments with
alterations. As these changes are not duplicated code anymore, they show up as a hole in the
diagonal lines indicating code clones in the dot plot.
Cloned sequences to which new code has been added or from which code has been deleted

can be detected by diagonal lines in the dot plot that are shifted in places. Insertions lead to more
lines of code – the diagonal line is therefore shifted downwards. Likewise, the deletion of source
code lines shifts the diagonal to the right as indicated in Figure 2.3(a).
The final pattern commonly found in dot plots concerns repetitive code, e.g., in switch–

statements. These clones occur several times at relatively small intervals and form rectangular
structures in the dot plot. Periodic occurrence of code can be limited to single statements or com-
prise whole similar methods of many lines or even complete files. An example for this pattern is
provided in Figure 2.4. In this case the cloned fragment is a similar method of about 12 lines of
code that is repeated in most of the files of a module.
All examples used in this section are actual results obtained from the clone detection runs in

the case study. All described patterns are very commonly found in the code of theMozilla system.
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Figure 2.4: Example dot plot showing code repeated periodically in several files of a module.



Chapter 3

Evaluation of Clone Detection
Tools

In Chapter 2 we have described several clone detection tools in theory. In this chapter we evaluate
three of them further in order to determine the tool best suited to the Mozilla case study. We
start by giving a brief summary of all seven approaches, followed by an explanation of how the
candidate tools are further evaluated. Finally the results of this evaluation are presented.

3.1 Introduction

3.1.1 Recapitulation

In this section we will briefly compare some major attributes of the code clone detection ap-
proaches we have presented previously. More comprehensive comparisons – also including tools
not treated in this paper can be found in [BB02] and [Bel02].

There is a consensus in literature that no single code clone detection tool is the software en-
gineer’s well known “silver bullet”. Each tool has it’s weaknesses and most have particular
strengths. Previous surveys indicate that there are clones that cannot be detected by all of the
tools. Some duplications are reported by only one approach.

We will consider several attributes with a certain importance to the applications of the tools in
our case study. Table 3.1.1 gives a brief summary of the different approaches. Especially the input
size should not be read as an absolute value but rather as an order of magnitude of experiments
documented in the literature – there might be undocumented uses with different input sizes.

Tool Approach Background Granularity Input Recall Precision
Dup Pattern matching Academic Line 700k High Low
Duploc Pattern matching Academic Line 150k1 High Low
CCFinder Pattern matching Academic Token 2,6m High Low
CloneDR Abstract syntax tree Commercial Line >400k2 V. low V. High
Duplix PDG Academic Statement 115K Low Low
CLAN Source code metrics Academic Function >14,8m Low V. High

Table 3.1: Comparison between clone detection approaches.
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3.1.2 Methodology for the Evaluation
During the initial definition of the research goals for this thesis, a pre-selection of three code clone
detection tools has been made. These candidates were mostly chosen for their availability. They
included Duploc (the only tool available for download under the GNU General Public License),
CloneDR (free evaluation copy available) and CCFinder, which has been been obtained with per-
mission of the authors at the Osaka University.

The three candidate tools were evaluated according to several criteria which were considered
important for the applicability of the tools in the case study. Most of these criteria are not directly
measurable or even depend heavily on the subjective perception of the user. The tools have been
evaluated using a sample input code of about 12.000 lines of C++ source code3. The results and
usability were then judged by the following criteria:

Language Support: The parts of the Mozilla system selected for this case study are written in
C and C++. It is therefore essential for any suitable code clone detection tool to be applicable to
inputs written in these programming languages. A tool using only plain text comparison without
any regard to the C/C++ syntax would not be of any use as it could only detect exact duplications.

Input Size: The complete Mozilla system consists of several million lines of source code (cf.
Table 1.2.2). As it was intended to compare not only one release of a module with itself but
several releases at the same time, a suitable clone detection tool must be able to process at least
several hundred thousand to a few million lines of input source code. If this threshold is fulfilled,
the future input can be scaled accordingly. Capabilities exceeding these minimal requirements
are only of secondary importance.

Comparison of the Candidates: The three clone detection tools evaluated use different ap-
proaches and detection algorithms. The detected clone candidates must be compared to see if
the programs detect roughly the same sets of code duplications. If this is the case, the use of only
one of these tools for the subsequent case study is sufficient. If on the other hand the resulting
sets are largely disjoint, more than one of the programs should be used and the results combined
to get a more complete overview of the code clones present in the case study.

User Interface: This criterion is largely based on the subjective impression of the tester. Desir-
able are a simple way of defining input source code both interactively and in a batch file, a clear
visualization of the clone candidates with the possibility of source code browsing and the abil-
ity to export and print certain aspects of the results. Also of importance is a user interface that
links the source code to the visualization. The code must be accessible so that the user can decide
if a candidate is a clone or a false positive. As there are no generally accepted metrics for the
assessment of user interfaces, this criterion reflects only the personal preferences of the user.

Output: The ideal clone detection tool presents the detected clone candidates in an understand-
able visualization as well as in a log file for later reference. The visualization is important for
the user to gain an initial overview with the possibility of quickly detecting points of interest for
further more in-depth study. An automatically created log file is necessary for a later automated

1Duploc is said to have been used on inputs of more than 1m lines of code. However, this could not be verified in the
literature.

2It has been verified in e-mail contact with Semantic Designs, Inc. that CloneDR is able to handle input of well over
1m lines of code.

3The available evaluation copy of CloneDR could only process Java code, which was therefore used for this tool.
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approach to process large volumes of clone data. A log file should also be formatted in a clearly
and possibly well documented way to facilitate parsing.

Recall: Ahigh recall is desirable in order to obtain asmany clone candidates – and therefore data
for further processing – as possible. The evaluation of the value for recall is based on literature,
most prominently in [Bel02].

Precision: A high recall is desirable in order to be able to reduce the necessity to inspect all
candidatesmanually prior to further processing the data. The evaluation of the value for precision
is based on the findings by Bellon [Bel02].

3.2 Evaluation

3.2.1 CloneDR
We only had the evaluation version of CloneDR available which has a very limited functionality.
It can only process either Java or COBOL source code. Full clone detection functionality is also
only available for input of less than 1.000 lines of code. If this threshold is exceeded, only the first
10 clone pairs with a length of less than 50 lines are returned.
The full license of CloneDR also provides a facility to automatically remove detected clones.

For our case study, this functionality has been considered irrelevant.

Language Support: The full version we were offered would accept exclusively C/C++ input
code, so this lack in the evaluation copy was not marked as a point against CloneDR.

Input Size: It has been verified through e-mail contact with the manufacturer of the tool that
CloneDR is able to handle input sizes in excess of 1 million lines of source code. This is enough
to compare seven releases of any module within the case study at the same time.

Comparison of the Candidates: Because of the limitations on input languages mentioned above
and the subsequent exploration using a different input programof similar size, the detected clones
could not be compared with the other two detection tools under consideration.

User Interface: CloneDR in its evaluation version is a pure command line tool that does not
come with a graphical user interface. The parameters and inputs are provided in a specially for-
matted file stating the options used in the detection as well as a list of every file to be tested.
It is not entirely clear if the full version offered to us would include a graphical user inter-
face or if CloneDR would have to be embedded into Semantic Design’s Design Maintenance
SystemTM(DMS) [BPM04] to provide this.

Output: Output is generally written to the terminal. To make it available in a file, a piping
mechanism provided by the operating system is necessarily used. CloneDR’s output provide a
comprehensive log of the whole detection process as well as some statistics about the detected
clone candidates. The main part of the output file is taken up with the actual candidates, de-
scribed in a verbose format. This has the advantage of giving all necessary information on one
glance. Included are for example the exact location of the clones, the source code and the neces-
sary parameters replaced for near-miss detection. The output is formatted for human use – it’s
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verbosity and lack of clearly defined separators would make it very difficult to parse for further
processing the output.

Recall: CloneDR is generally attributedwith a low value for recall, meaning that it does not find
all clones present in a given system.

Precision: The precision of the candidates reported is generally high. The clones reported in
our test input were for the most part justified. There were some cases where candidates had to be
rated as false positives. Other detected cloned code fragments could not possibly be refactored
(e.g., exception- and event-handling).

3.2.2 Duploc
Duploc is written in Smalltalk and needs VisualWorks 3.0 to run. The source code is available for
download4 and needs to be recompiled and integrated into a VisualWorks workspace. We used
VisualWorks versions 3.0 as well as 7.3 in our trials.

The tool is the only one known to be freely available under the GNU General Public License.

Language Support: Duploc allows a very wide range of programming languages as input. C
and C++ are among them. Duploc also allows the comparison of files written in different pro-
gramming languages.

Input Size: Duploc is supposed to have handled inputs of about 1 million lines of code. The
largest number that could be verified in the literature is around 150,000LOC, which is still enough
to compare seven releases of most of the modules comprising the case study. The lower boundary
of 150,000 LOC is however insufficient for the larger modules.

Comparison of the Candidates: As was to be expected from its reported recall, Duploc detected
a substantial quantity of code clone candidates. Because of the approach used for clone detection,
the tool reported fewer candidates than CCFinder which is described below.

User Interface: Duploc features either an interactive mode with a graphical user interface or
a batch mode. In interactive mode, the results of the detection cycle are displayed as a series
of scatter plots. The source code can be browsed by selecting the relevant clones in the graph.
In batch mode only a log file detailing the results is generated – the candidates are not shown
in graphic form and no source code browsing is possible. The log file cannot be loaded and
processed to show the graph.

A problem that has surfaced frequently are Smalltalk error messages mostly concerning un-
handled exceptions. Examples for their appearance were during source code browsing, deleting
an old file list or when the cursor left a certain area. Whether these errors occurred because of a
faulty installation or because of errors in the source code remains unknown to the user unfamiliar
with Smalltalk.

4http://www.iam.unibe.ch/˜rieger/duploc/
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Output: The output provided is a dot plot showing the clone candidates graphically. This rep-
resentation allows a visual recognition of patterns characteristic to certain types of clones. The
graph can be saved in Postscript format. No log file is generated in interactive mode.
In batch mode, a log file is generated including information about the clone sequences found

in any two files. The output generated can be parsed without much difficulty for further use
outside of Duploc.

Recall: Duploc is attributed with a high recall due to the number of candidates returned.

Precision: The precision of this tool is in the literature usually considered to be low. However,
the samples we have checked out of the set of clones detected in our test code were for the most
part real clones (mostly of the unaltered “copy-paste” type). We consider Duploc’s precision to
be sufficient for our purposes.

3.2.3 CCFinder
CCFinder was obtained with the help and permission of the developers at the Osaka University.
The program is written in Java. Initially, CCFinder is a command line only program.
The development team does also provide a maintenance support environment called Gemini

into which CCFinder is integrated. It adds visualization capability as well as access to further in-
formation on the input code. Whenever we talk of CCFinder, wemean a combination of CCFinder
and Gemini.

Language Support: CCFinder supports a wide variety of input languages including C and C++
which we need for our case study.5

Input Size: The highest known reported size of input used with CCFinder is around 2.6 million
lines of code [KKI02]. This is a sufficiently high number to check seven releases of any single
module of the Mozilla case study. It is also likely to be possible to check one complete release of
Mozilla at once.

Comparison of the Candidates: Depending on the parameters set for a detection run, CCFinder
does detect more candidates than Duploc giving this tool a higher recall ratio. The clones covered
by Duploc are generally also found with CCFinder.

User Interface: Gemini offers an intuitive user interface presenting the candidates in scatter plot
form. Additionally, several metrics are available as well as source code browsing with highlight-
ing of the clones. Gemini provides sophisticated filtering and sorting mechanisms allowing the
user to specify exactly what clones are of interest to him. Metrics, scatter plot and source code are
interconnected so that the focus is always on the selected clones regardless of the view.
All parameters necessary for CCFinder can be changed directly in the graphical user interface,

allowing the user to tailor the tool to his needs.
One disadvantage of the interface is that there is no possibility of printing any part of the

displayed information directly out of Gemini.

5The tool is also able to process plain text so that in theory any given programming language can at least be examined
for exact duplication.
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Output: The clone candidates are displayed in scatter plot format along with additional metrics
and meta-information in Gemini. One problem is that the scatter plot or clone metrics cannot be
printed other than by taking a screenshot. This method is feasible but cumbersome and inade-
quate insofar as all information concerning the context is lost.

An additional log file can be created. This file is generated by CCFinder without any in-
volvement by Gemini. This means that the additional information – such as metrics – which is
calculated by Gemini cannot be saved. However, the log files can be loaded in Gemini to access
this data.

The log file is precisely formated making it possible to parse it for further use outside the
CCFinder-Gemini package.

Recall: Like Duploc, CCFinder has a high recall ratio. Depending on the parameters used dur-
ing the detection run, recall can be even higher than in the tool evaluated above.

Precision: Due to the amount of candidates, CCFinder also reports a number of clones which
have to be classified as false positives. This leads to a relatively low precision.

This behavior seems to be caused by the very fine-grained parametrization during the clone
detection process. The candidates often have to be inspected manually to determine if they are
genuine clones or not.

3.3 Conclusion
The evaluation of the three tools was used to decide which approach should chiefly be used for
the Mozilla case study.

All three tools comply with the language support criterion, even though CloneDR would have
to be purchased for C/C++ support.

The three criteria including precision, recall, and the comparison of the candidates are all inter-
related. A high recall was favored over high precision because in any case the reported candidates
would have to be evaluatedmanually for patterns significant to our research goal. Therefore, false
positives could be eliminated later on. A higher recall would deliver more interesting candidates.
CCFinder and Duploc are pretty much on the same level in these criteria with slight advantages
for CCFinder.

CCFinder also has the best and most intuitive user interface among the evaluated tools. The
additional clone metrics are a further advantage for this project. Duploc’s interface needs more
time to get used to, but is also a powerful instrument. The problem with inexplicable error mes-
sage persists but does in the most cases not prevent the user from reaching his goal. The evalua-
tion copy of CloneDR could not compete with either as far as the user interface is concerned.

While CloneDR produces the most comprehensive log file, the file generated by CCFinder is
easier to parse for a prototype implementation later in the project. The clone metrics calculated
by Gemini are not represented in the output log while CloneDR has a reduced set of metrics
available.

After this evaluation, it was decided to use CCFinder and CloneDR as primary research tools
with Duploc as backup. This however proved to be impossible after the estimated costs to pur-
chase CloneDR were taken into account. It was therefore decided to go on with the other two
tools. CCFinder was to be used first and Duploc was to help in the selection of candidates suit-
able for further manual inspection. It was hoped that a combination of the two tools would
significantly reduce the time spent on eliminating false positives.



Chapter 4

Methodology

This chapter introduces a methodology with the goal of solving the research question posed in
Chapter 1. The application of this methodology to the case study will be treated in a separate
chapter.

4.1 Introduction
In this thesis we address the question if there is a connection between the presence of code clones
in a software system and the occurrence of change couplings during the evolution over several
subsequent releases. As this question has not yet been explicitly treated, a new methodology for
finding a solution is introduced which is subsequently applied to the case study.
The approach to answering the research question can be broken down into several steps. Most

of the later phases are based on further processing data obtained in earlier steps. The basic frame-
work of the approach consists of:

1. Evaluation of code clone detection tools,

2. Application of clone detection tools,

3. Identification of suitable clone candidates,

4. Extraction of change coupling information from the RHDB,

5. Correlation of clone data with change couplings,

6. Definition of a metric to describe the impact of code clones, and

7. Implementation of a prototype tool exploiting a connection.

An in depth description of the theoretical aspects of this framework is given in this chapter and
its application to the Mozilla case study is treated in the next chapter. The theory behind some of
these steps is comparatively trivial and will only be described briefly.
The Mozilla project uses CVS for version control. All information about change couplings

have been extracted from this repository. This process has been described in previous work
[FPG03].



24 Chapter 4. Methodology

Figure 4.1: Overview of the framework for this thesis.

4.2 Framework

4.2.1 Evaluation of Code Clone Detection Tools

The selection of the code clone detection tool most suitable for the task only nominally forms part
of the framework. Once a user has decided on his preferred method, this step can be skipped in
later applications of this framework.

The basics for this evaluation are given in Chapter 2 and the process of selecting the most
suitable tool with respect to our case study Mozilla is described in Chapter 3.
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4.2.2 Application of Clone Detection Tools
The selected clone detection method must then be applied to the system being examined. This
phase can be broken down into three sub–steps such as:

1. Provision of an environment,

2. Selection of input, and

3. Clone detection runs.

Provision of Environment

Considerable care must be taken to select a test environment suitable to the task. Several of the
available clone detection tools have special requirements due to the way they were implemented.
Often external runtime environments for either Java or Smalltalk must be provided while other
tools are only available for certain operating systems.

Another major requirement which must be considered is memory consumption. Detecting
and above all visualizing code duplications are resource–intensive tasks that often require more
random access memory than standard workstations are equipped with.

The selection of a suitable test environment depends mostly on the tool selected in step 1 of
this framework and the requirements are usually mentioned – although often not in their entirety
– in the appropriate literature.

Selection of Input

There are two aspects to the selection of source code suitable as input for clone detection tools.
The first is concerned with the examined software system and the second with the clone detection
tool itself.

Industrial–sized software systems are not always written in only one programming language.
Moreover, a certain percentage of the files in a project does not necessarily contain source code
suitable for inspection. Software systems also include binaries, image files and a multitude of
other formats.

Clone detection tools usually have a certain limit beyond which the display of results becomes
either impossible due to constraints of the program or unmanageable by the user because of the
sheer volume of data presented.

This sub–step must address both of these problems. Once it has been decided what the extent
of the sample is and on what type of files the focus of the clone detection run is, the entirety of
the examined system’s file must be filtered accordingly. The files must then be formatted in a way
that the clone detection program can use them as input. At least this usually means the creation
of a meta file containing a list of the files to be compared. It can also include preprocessing the
files directly prior to any detection run.

Since the focus in these examinations is always on several releases of the same system, this
increased complexity does also have to be taken into account. The different releases must be
compared to each other which increases the size of the compared code considerably. It will also
be necessary for the user to be able to distinguish between the different releases after the result
has been obtained. Most detection tools provide a facility for grouping the input and output. The
user has to exploit this possibility in a way to make the distinct releases clear.
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Clone Detection Runs

If the first two sub–steps have been completed successfully, the application of the clone detection
tool is straight–forward. The user has only to decide on which options are used for the detection.
Usually this includes at least the definition of the minimum length of a code clone but some
detection programs offermore sophisticatedmeans of configuring the tool to the needs of a certain
case study.

The clone detection runs must produce an output that is suitable for further study. To achieve
this goal, a multi–step approach to clone detection is used, which leads to a loop back from phase
3 (identification of suitable clone candidates) to phase 2 with ever finer granularity of results.

At first the whole system (or a part of it as large as possible) is checked for clones at a time.
It is neither necessary to check all releases at the same time nor does the defined length of a code
clone have to be minimal yet. However all releases must be checked and the visualizations are
then compared to identify areas of interest for further study.

After that, the set of files used as input in each subsequent detection run is narrowed until at
last only files containing instances of a certain clone class are compared. As the number of input
files gets smaller, the minimal length of detected clones can be reduced accordingly to produce
a finer grained detection result. In these later repetitions of clone detection runs, it is essential
that all releases of the files are checked at the same time in order to better detect changes between
different releases. After every run, the results are examined as described in Section 4.2.3.

4.2.3 Identification of Suitable Clone Candidates
Not all clone candidates reported by a detection tool are equally useful in the study of the devel-
opment of code duplications during the evolution of a software system.

This phase of the framework forms a loop together with the previous phase. The suitable
candidates obtained from a repetition of phase 2 are examined ever more finely.

As the goal of this framework is to define the connection between duplicated code and change
couplings between files, the only interesting clone pairs are those in which the cloned code frag-
ments appear in two or more files instead of duplications within one file only. Furthermore,
clones whose length varies or that do appear or disappear during the examined period are con-
sidered more interesting than duplications that remain stable. This selection criterion is based on
the long–standing assumption that there is a significant relation between code clones and change
couplings. If the amount of clones is reduced, this should lead to an observable decrease of change
couplings. After an increase of code duplications, we expect a related rise in change couplings be-
tween two files. In order to express the necessary attributes of code duplications, a new measure
must be defined.

Classification of Code Clones over Several Versions

To facilitate argumentation, we introduce a classification of evolving code clones for this thesis.
Depending mostly on the clone coverage, duplicated code examined over more than one release
can be clustered in five classes or types of clones.

In [KSNM05] a model of clone genealogy is introduced. Its classes are mostly based on a
qualitative examination of the evolution of duplicated code. For our approach amere quantitative
approach is sufficient and the model used is therefore simpler. During this phase of research, it
is unimportant if there are changes within a cloned code fragment. What counts is the fact that a
duplicated segment is either stable, increasing or decreasing over time.

Absolute numbers are inadequate when comparing different files because their lengths are
hardly ever truly comparable. The same applies to the length of cloned code fragments. Even
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when only two files are compared to each other, it is not necessarily the case that both contain
cloned sequences of the same length – file A might contain a cloned fragment c, while file B
contains fragment c more than once (or even overlapping). Therefore this model of code clone
classification relies on the clone coverage in every single file. This ratio is for two files A and B
defined as

CloneCoverageA(A, B) =
ClonedLines(A, B)

NCLOC(A)
and

CloneCoverageB(A, B) =
ClonedLines(B, A)

NCLOC(B)

where ClonedLines(X, Y ) is the number of lines in file X that are clones of lines in file Y 1 and
NCLOC(X) is the number of lines of source code in file X not counting comments and blank
lines. A cloned line is only counted once even if it forms part of more than one clone pair or
is covered multiple times by overlapping clones. It is important that this definition is always
applied to exactly two files at a time. When more than two files are compared, every pair of files
out of this set must be compared separately. It is however not important if A and B are files. Any
suitable entity of source code can be used instead.
Due to the definition of a code clone

CloneCoverageA(A, A) = CloneCoverageB(A, A) = 1

holds for every file A when it is compared to itself as any file is by definition an exact clone of
itself.
To apply clone coverage to a set of evolving files, it is necessary to observe the values over

several versions of the files. These comparisons allow the classification of a specific file into one
of five types depending on the development of its clone coverage.
For the definition of the different types, it is not important which file is observed. For this

reason we shortened CloneCoverageX(X, Y ) to CloneCoverage(X, Y ).
Two files A and B can share more than one semantically distinct clone pair. The types can be

used to classify every instance of a clone pair or clone class in two files on its own. In this thesis,
CloneCoverage(X, Y ) is however always calculated for the entirety of all code clones shared by
X and Y .

• Type 0:
The relative length of the cloned fragments in question remains the same between versions
i and i + 1.2

CloneCoverage(A, B)i = CloneCoverage(A, B)i+1 #= 0

• Type 1:
A clone is newly introduced after version i. It is present in version i + 1 but not in i.

CloneCoverage(A, B)i = 0

and

CloneCoverage(A, B)i+1 > 0

1It is not necessarily the case that all cloned lines are of the same importance at a given time. Clone coverage can also
be used if only a specific subset of cloned lines shared by A and B is observed.

2All files are classified separately. It is therefore not necessary to distinguish between CloneCoverageA(A, B) and
CloneCoverageB(A, B) in the context of the definition of types 0 to 4.
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• Type 2:
A clone present in version i is subsequently deleted and not contained anymore in version
i + 1.

CloneCoverage(A, B)i > 0

and

CloneCoverage(A, B)i+1 = 0

• Type 3:
The clone grows in importance after version i. In version i+1 it is larger in proportion to the
non-commented lines of source code than in i. Either the code clone itself has become longer
or the total lines of code in version i+1 have diminished while the duplicated fragment did
not get smaller proportionally.

CloneCoverage(A, B)i > 0

and

CloneCoverage(A, B)i+1 > 0

and

CloneCoverage(A, B)i < CloneCoverage(A, B)i+1

• Type 4:
The clone’s importance is lower in version i+1 than it was in version i. Either the duplicated
sequence has become shorter or otherwise the total number of lines of code has grownwhile
the cloned fragment was not expanded proportionally.

CloneCoverage(A, B)i > 0

and

CloneCoverage(A, B)i+1 > 0

and

CloneCoverage(A, B)i > CloneCoverage(A, B)i+1

Types 1 to 4 show some change during their life cycle. Among them, those best suited for
further investigation are type 1 and 2 duplications. It is expected that the couplings between files
containing cloned fragments of each other show some sort of correlation between the changing
code clones and their later couplings. If this assumption is true, for example two files into which
a type 1 clone is introduced after version i are expected to share more couplings in subsequent
versions. Type 0 clones are also of interest: according to the hypothesis, couplings caused by code
clones are expected to be stable.

A certain clone is not restricted to belong to only one of these types over it’s life time of several
versions. It is for example possible for a duplication to be introduced after version i and growing
in importance between versions i + 1 and i + 2 while it is eliminated again after version i + 3.
Thus it is of type 1 between i and i + 1, of type 3 between i + 1 and i + 2, of type 0 from i + 2 to
i + 3 and finally of type 2 between i + 3 and i + 4 – if only versions i and i + 4 are compared, the
clone would not be detected at all as it is irrelevant regarding these two versions.
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Selection of Code Clones

After the first clone detection run comparing as much of the system as possible, the metric de-
scribed above is not yet applicable due to the volume of obtained data. The initial selection must
there be based on the visualization of the result. Points of interest that are promising for further
examination are often visible as dense patterns in the dot plot. Other than by the classification of
all detected candidates, this is the only possibility of obtaining finer grained input. As the inten-
tion of this first detection run was to get an overview over the system rather than the detection of
all suitable clones in one step, this rather intuitive criterion can be justified. It does however have
one major drawback: if the visualized output is not ordered in any way, the patterns may not be
visible. But as the input can usually be defined in a way to guarantee such an order – usually
either by different source code folders or by modules – this problem can be evaded.

After later detection runs the selection can be made with the help of the clone coverage metric.
As in these detections more than one release of the input files is checked at the same time, the
clones can be classified into the 5 types by comparing the dot plots of the different releases. The
exact clone coverage value does not have to be known at this time.

There is one more difficulty that is addressed in the course of this phase. As has been men-
tioned in Chapter 2, the duplication candidates reported by the detection tools are not always real
clones. Since no clone detection tool with perfect precision and a substantial recall has yet been
developed, the user has to decide by manual inspection if a candidate is a real clone or a false
positive. This problem currently precludes a complete automation of this phase of the process.
The selection of the clones for further study has to be done by a human unless the user is willing
to accept the possibility that false positives influence further calculations3.

4.2.4 Extraction of Change Coupling Information

Change Couplings

Files or other source code artifacts in a software system can be coupled in a variety of ways. These
dependencies affect the maintainability of the system. Syntactic dependencies can be detected by
examining the source code and include characteristics such as method calls. In systems imple-
mented according to best practices in software development, these dependencies are often found
not only in the code but also in the documentation.

On the other hand, there are couplings which are not detectable by program analysis alone.
These are so called logical dependencies. These interrelations are usually not documented and
known only implicitly to the developers. As these couplings are not represented in the source
code either so that other means of detection must be applied which usually rely on data obtained
from version control systems [GHJ98, GJK03, ZWDZ04].

Change couplings are a special case of logical couplings and indicate that source code artifacts
have been modified together in the past. The reasons for the occurrence of such coupling can
be very different and can for example be based on dependencies explicitly designed into the
system’s architecture or on unintentional relations such as the introduction of code clones during
the implementation phase of the system.

In this framework change couplings on the level of a single file rather than between modules
or subsystems are examined.

3When a sufficiently large amount of input is used, meaningful results may still be obtained by a completely automated
process.



30 Chapter 4. Methodology

Release History Database

The concept of the release history database (RHDB) was first described in [FPG03]. The database
was using version and bug tracking data. Currently the RHDB contains data obtained from the
Mozilla open source project which uses CVS4 as version control system and Bugzilla5 for the
organization of bug reports. The data is stored in a MySQL database.

For the purpose of this framework, not all information stored in the RHDB is of equal impor-
tance. Currently6 there are 91 tables used in the RHDB – only three of them are needed for the
extraction of change coupling data. Every file in the CVS repository has a corresponding instance
in table cvsitem where its attributes are replicated in the database. Every check–in of a file re-
sults in an entry in the CVS log file. Information about any of these modifications is stored in
the cvsitemlog table of the RHDB. The final table necessary for the determination of change
couplings is cvsitemloggroup. These groups are formed by files that have been checked in
together during a time slot of 15 minutes. For any file modified during this interval one en-
try in the cvsitemloggroup table is added. Any of these groups has a unique value in field
cvsitemloggroup.groupidx and can therefore be recognized as being coupled.

The RHDB contains much information that is not needed for the purposes of this framework
and is still acquiring more tables and information.

Measuring the Density of Change Couplings

The number of change couplings is like the amount of code clones a metric that is only defined
for a pair of files. To make the values comparable to each other, the absolute number of change
couplings must be observed in relation to the number of times a file is checked into the version
control system during the time interval in question.

The number of change couplings between a pair of files or similar entities of source code
during a given interval is the same for each file. The number of check–ins during the same time
can however vary, giving us a distinct ratio for each file. For two files A and B the ratios are
defined as

CouplingCoverageA(A, B, I) =
ChangeCouplings(A, B, I)

Checkins(A, I)

and

CouplingCoverageB(A, B, I) =
ChangeCouplings(B, A, I)

Checkins(B, I)

where ChangeCouplings(X, Y, I) is the number of times fileX and file Y are checked in together
during time interval I and Checkins(X, I) is the total number of times fileX is checked in during
I .

Like in the case of CloneCoverage(X, Y ) the index defining the file has been left out when the
equation is covering not a specific pair of files but all files. CouplingCoverageX(X, Y, I) is thus
abbreviated to CouplingCoverage(X, Y, I). In this thesis we use the convention that the indices
are left out when the equations do not refer to a specific pair of files.

In theory,
0 ≤ CouplingCoverage(X, Y, I) ≤ 1

should hold.
In practice there are two cases in which the above equation is not fulfilled. The first and more

frequently encountered problem occurs if file X has never been checked in (and therefore not

4http://www.cvshome.org
5http://www.bugzilla.org
6As of September 19th 2005.
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been changed) during interval I , which leads to Checkins(X, I) = 0. In this case a division by
zero occurs and CouplingCoverage(X, Y, I) is not a number. In this case, the value is artificially
set to CouplingCoverage(X, Y, I) = 0. This decision is justified by the fact that since X has never
been changed, there cannot be any change coupling between X and Y during period I .
The other anomaly that can occur is caused by the implementation of the change coupling

concept in the RHDB. It is possible for two files to be coupled more often than one or both of
them are changed in total. Two files are considered to share a coupling if they are checked into
CVS during the same time slot spanning 15 minutes. If file X is checked in at time 0 ≤ tX < 15
while file Y is checked in twice at 0 ≤ tY 1 < tX and at tX < tY 2 ≤ 15, this is counted as two
couplings between X and Y . Since logic demands that two files cannot be coupled more often
than theMinimum(Checkins(X, I), Checkins(Y, I)), any coupling coverage values larger than 1
are artificially set to 1. This can be justified because in the short interval between two check–ins of
the same file not much can be changed – it is more likely that a small change has been forgotten
before the first check–in necessitating the second.
A high coupling coverage between two files indicates a possible maintenance problem. There

are various reasons why two files have to be changed together. One main reason are code clone
pairs with fragments in both files, but it is not the only conceivable cause. Other reasons can
include a functional dependency between two files or simply the fact that the same programmer
is responsible for both files.
When combinedwith the clone coverage criterion, coupling coverage can serve as an indicator

if the code duplications in question are dangerous – that is when the files are coupled because of
the clones – or harmless – the changes to the files do not concern the cloned fragments. In the
first case, the maintainability of the system could benefit from a refactoring, in the latter case, the
system will most likely not suffer if the code clones are left in place.

Obtaining Coupling Coverage Data

The raw data necessary to determine coupling coverage values for the Mozilla case study can be
found in the release history database. For other case studies, this data would have to be obtained
previously. This process is not covered in this thesis and is treated in [FPG03]. However, since
the RHDB is based on CVS data obtained from the public Mozilla repository7, it only contains
data that is generally stored by CVS or that can be derived directly from this data. One major
drawback is that as of now, CVS does not provide information about where exactly the changes
were made inside the file prior to check–in. Therefore this information is not contained in the
RHDB and there is no way to find out from the database if the cloned fragments inside a file were
affected by the changes made before a check–in. This check must therefore be done manually.
BothChangeCouplings(X, Y, I) andCheckins(X, I) can be calculated directly from the entries

in the database using only the three tables cvsitem, cvsitemlog and cvsitemloggroup. X
and Y correspond to the relative paths of the files under examination. The interval I must be
broken down into a starting date I1 and an end date I2 to be compatible with the database tables.
For the purpose of the determination of coupling coverage, the actual values of the resulting
tables are not important. Therefore the queries can be designed to merely count the elements of
the results set.
The determination of the total numbers of check–ins of a given fileX during an interval (I1, I2)

is straight forward:

SELECT COUNT(*)

FROM cvsitem i, cvsitemlog l

WHERE i.rcsfile = X

7http://www.mozilla.org/cvs.html
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AND l.cvsitemid = i.id

AND l.date BETWEEN I1 AND I2;

Extracting the number of change couplings between two files X and Y during interval (I1, I2) is
also possible but requires joins over more tables:

SELECT COUNT(*)

FROM cvsitemloggroup g1, cvsitemloggroup g2, cvsitemlog l1,

cvsitemlog l2, cvsitem i1, cvsitem i2

WHERE i1.rcsfile = X

AND i2.rcsfile = Y

AND l1.cvsitemid = i1.id

AND l2.cvsitemid = i2.id

AND l1.date BETWEEN I1 AND I2

AND l2.date BETWEEN I1 AND I2

AND g1.cvsitemlogid = l1.id

AND g2.cvsitemlogid = l2.id

AND g1.groupidx = g2.groupidx;

With these values, the coupling coverage can be determined for each pair of files during a given
period. Later on, these values shall be correlated with the clone coupling data.

4.2.5 Correlation of Code Clones with Change Couplings
A correlation between code clones and change couplings has so far been taken for granted. This
assumption largely depends on whether or not in the case of a coupled change the duplicated
source code fragments were affected. Coupled changes must be examined manually to determine
the changes that lead to a coupling.

The values obtained are displayed in a chart plotting coupling coverage values against clone
coverage.

Thereafter, a regression analysis of the data obtained is attempted to quantify. This correlation
is needed in order to define a metric for the impact of a code clone on the evolutionary behavior
of code fragments. Two premises must be fulfilled for this regression to be significant. One is that
a representative sample of all files containing code clones is used for the calculation. The second
is that this random sample can be described with sufficient precision by a regression function,
meaning that the correlation coefficient is sufficiently close to 1.

4.2.6 Definition of a Metric to Describe the Impact of Code Clones
An intuitive distinction between “harmless” and “dangerous” code clones has so far been used in
this thesis. For the application of this classification to other case studies, a more formal approach
is necessary. In the first place the factors that influence the classification of code clones in rela-
tion to change couplings are discussed. Following this, an attempt to defining a measure of the
dangerousness of individual code duplications is made. Finally a way of visualizing this newly
defined metric is discussed.

Influencing Factors

As has beenmentioned before, it is not possible to sufficiently classify a code duplication solely on
the basis of its size as measured by detection tools. The importance of a code clone is basedmostly
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on its context in the whole system. Even large fragments of duplicated code can be insignificant
to the evolution of an examined system if they occur in library files which – even though they
form a part of the project in question – are maintained externally. On the other hand there are
small cloned code fragments in important parts of the system’s source code that are the causing
many change couplings. Code clones always have to be examined in relation to the total lines of
code in their environment (usually a file) as absolute values are hard to compare.
The same considerations apply to the study of change couplings. Again these values must not

be seen as absolutes but rather in proportion to their environment which in the case of change
couplings are the total check–ins of – or rather changes to – the files in question.
Despite the deliberations leading to the conclusion that the clone and coupling values are

examined as proportional rather than absolute values, these absolutes nevertheless have a further
influence on a metric for the “danger” inherent to a code clone. Generally speaking, a longer
fragment of duplicated code tends to have a larger influence than a shorter sequence and a file
that is changed and checked in more often has a greater potential of presenting a problem than a
file that is never touched during the evolution of a system.
Several interesting parameters are currently not obtainable automatically. Since CVS does not

provide the exact position in the source code where a change has occurred, these missing param-
eters unfortunately include information if a change leading to a check–in really affected the code
clone. One objective of the proposed metric is that it can be calculated without human interven-
tion. Therefore, all information that would have to be obtained manually has been excluded from
the calculation.
The input parameters for the calculation of the metric include:

• Clone coverage,

• Coupling coverage,

• Length of cloned fragments, and

• Absolute number of coupled check–ins.

Definition of a Metric

Any possible measurement for the impact of certain code clones must take into account the pa-
rameters mentioned above. Even so, it cannot be an absolute metric because of the factors that
are also considered important but which are as of now unobtainable by automated means. A
measurement could rather serve as an indicator about which clones could be good candidates for
further inspection and for a possible refactoring effort.
The first premise for a metric with a certain explanatory power is that clone coverage and

coupling coverage are significantly correlated. To demonstrate such a relationship, enough data
must be obtained to allow the calculation of a regression function. To be significant, the result of
such a regression analysis would have to have a coefficient of determination (or R2–value) close
to 1. If such a correlation is not apparent, the usefulness of any defined metric based on these
parameters is highly doubtful.
The length of the cloned code fragments as well as the absolute number of couplings are of

importance mostly to weigh the results further. A longer clone in a file with more couplings
shows more potential for a refactoring than a smaller clone even though that might yield the
same combination of clone and coupling coverage values.
If such a metric is meaningful depends largely on the statistical significance of the correlation

between clone and coupling coverage values.
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Visualization

Because of the difficulty to express the four dimensions making up the danger inherent to a given
clone in one metric, a different light–weight approach is proposed. This method of visualiza-
tion is inspired by Michele Lanza’s polymetric views implemented in the CodeCrawler reverse
engineering tool8 [LD03].

In the visualization, the four dimensions listed above can be displayed in a Cartesian coordi-
nate system enriched with additional use of color and the diameter of points in the chart. The
dimensions are used as follows:

• Clone Coverage→ x–axis

• Coupling Coverage→ y–axis

• Length of the Clone→ size of the point

• Number of Couplings→ color of the point

The defined metrics are also shown in Figure 4.2.

Figure 4.2: Description of the metrics used in the visualization.

The x– and y–axes run from 0 to 1 as in the diagrams used earlier in this thesis.
The size of the point is defined in proportion to the length of the clones. The maximum diam-

eter is fixed and corresponds to the length of the longest clone. All other diameters are calculated
proportionally to the length of the rest of the clones:

Diameter(A) = f(ClonedLines(A, B), max(ClonedLines(X, Y ))

where A is the file the point stands for, B the file with which A is compared and max(Cloned–
Lines(X, Y )) is the maximum length of cloned fragments encountered in the case study. More
elaborate, the function leading to the diameter of any point is

Diameter(A) = MaxDiameter · ClonedLines(A, B)
max(ClonedLines(X, Y ))

whereMaxDiameter is a constant describing the maximal diameter of a point.

8http://www.iam.unibe.ch/˜scg/Research/CodeCrawler/index.html
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The color is defined in a way that the highest number of couplings is displayed as red (RGB–
value (255,0,0)). The intermediate colors are determined by variations of the RGB value propor-
tional to the relative number of couplings so that a gradual transition to blue is achieved (RGB–
value (0,0,255)), which corresponds to zero couplings. A value precisely in the middle between
the maximum number of couplings and 0 therefore corresponds to a violet color defined by RGB
value (127,0,127). Two values – the value of the R–channel and of the B–channel – are changing
while G–channel remains a constant 0. The differences between the R– and B–values of the max-
imal number of couplings and the values for any other number of couplings can be described
mathematically as

R =
ChangeCouplings(A, B, I)

max(ChangeCouplings(X, Y, I))
· 255

and

B = 255 − R

whereR is the RGB–value for red andB the RGB–value for blue of the color of the point in the re-
sulting chart. A and B are the specific file under consideration. max(ChangeCouplings(X, Y, I))
represents the maximal number of couplings between any two files X and Y during interval I .

Unlike the numerical approach described above, this visualization is not dependent on a sig-
nificant regression. The user is able to see possible problems and reacts by closer inspection of the
affected files.

Challenges Concerning the Metrics

The numeric metric as described above has several weaknesses. A single number cannot express
everything that would be necessary for an extensive conclusion about the amount of problems a
code clone poses to the maintainability of the system.

For example, clone candidates reported by detection tools are often outright false positives or
otherwise of insignificant – or inferior – quality. Moreover, even if two files are connected by a
high coupling coverage value, it is not necessarily the case that these couplings have been caused
in any way by code duplications.

The visual approach also suffers from these problems. However, it is possible to convey a
much larger amount of data than in the case where all aspects are aggregated into one single
number. Therefore, the visualization is probably more useful to a user interested in detecting
problematic code clones.

Both methods also rely on the availability of sufficient historic data as the coupling–related
parameters are only available in hindsight. The expressiveness declines if only data for a short
period of time is available.

One drawback of the visual approach is that in case of very large volumes of input data the
resulting visualization gets cluttered and very hard to understand.

In any case, both approaches can only serve as indicators for possible problems. A code clone’s
danger of posing a maintenance problem can only be determined conclusively, if the files in ques-
tion are compared manually to see if the duplication is the cause for change couplings. However,
the proposed metrics can help to focus the search for problematic elements by narrowing down
the possible candidates.
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4.2.7 Implementation of a Prototype Tool
Intention

This final phase of the framework has one goal: to simplify the preceding steps by integrating
and automating as much as possible and therefore to reduce the workload of the user.

As this thesis is part of a larger effort to create a framework for a software reengineering
tool, no stand–alone application with a focus on the relationship between code clones and change
couplings is planned. Instead, a number of library classes limited to certain aspects of the problem
are written, which can be integrated into the larger project.

Domain and Requirements

As the goal of the implementation phase is the production of several loosely coupled library
classes, the problem domain has been broken down into several distinct assignments that might
not necessarily correspond to a single phase of this framework.

The problems are listed in the temporal sequence dictated by the separate phases of the frame-
work:

1. Generation of an input file for CCFinder,

2. Parsing of a CCFinder output file,

3. Parsing of a C/C++ source code file,

4. Retrieval of coupling related data from the RHDB, and

5. Computation of metrics.

The first issue is not connected to the rest because there is currently no possibility of an integration
of CCFinder into the broader framework these library classes are part of. Problems 2, 3 and 4 are
all preconditions for the calculation of any metrics but are also used on their own.

Possibilities

The aspect of visualization has so far only been implemented rudimentary. If this simple visual-
ization can be combined with the ability to jump to the respective source code entities (possibly
combined with the highlighting of cloned code), a user will have more possibilities to explore the
problem more effectively.

Another aspect that is not yet implemented is the integration of the CCFinder code clone
detection tool. Since this program is not distributed as open source, this integration could not be
realized yet.

As the classes do not define a stand-alone utility, it will be necessary to include them into a
larger system. The functionality they provide can be used universally despite of its context int he
larger system.
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Case Study

This chapter describes the proceeding during the application of the previously introduced tools
and methodologies to the case study and presents the results of the experiment and the insights
gained.

5.1 Evaluation of Clone Detection Tools
This phase of the framework has already been covered in detail in Chapter 3. The decision taken
was to employ CCFinder for the most part and Duploc as a backup. Because of problems with
Duploc encountered later in the case study, CCFinder was finally used exclusively.

5.2 Application of Clone Detection Tools
This Phase comprises the actual clone detection runs on the selected Mozilla case study. This
section treats the setup used during the experiment, a definition of the files examined for code
duplication and a description of the actual detection runs.

5.2.1 Environment
All clone detection tools were run on a computer under Windows XP (Service Pack 2) on a 2,8
GHz Pentium processor. Initially our machine was equipped with 512 MB of RAM, which was
soon found to be inadequate. In the final configuration, memory was increased to to 3,5 GB of
RAM.
For the programs that need Java, both JRE 1.4.2 and 1.5.0were provided, but wherever possible

release 1.4.2was used. Duploc needs a VisualWorks environment for execution. We used versions
3.0 and 7.3. VisualWorks 3.0 did not run on our test computer but only on a secondary machine
with much limited hardware. Therefore, version 7.3 was used during the main test runs. We did
not find any difference in the behavior of Duploc.

5.2.2 Files Selected for the Experiment
We decided early in the project to examine only those parts of the Mozilla case study, that are
written in C or C++. The reason for this decision is in the availability of code clone detectors for
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these programming languages, whereas there are fewer options for other languages used in the
Mozilla project (e.g., Perl). Also, C and C++ files form the bulk of the project’s source code.

The source code as obtained from the Mozilla website1 included many files that were not of
interest for this survey. These included among others makefiles, binaries, various files created by
CVS and files written in a different source code language. All files except those clearly associated
with C or C++ have been deleted along with empty directories. This leads to a structure contain-
ing only files ending with “.c”, “.cpp” or “.h”. The decision was taken in order to facilitate and
speed up the definition of the input used for the following clone detection runs.

Early test runs were conducted in order to determine the size of the input most suitable for
the next phase of the survey. Due to certain known limitations to the size of input code in Duploc
these early tests were attempted with CCFinder using Gemini for visualization. During all detec-
tion runs, the Java heap space allocated to CCFinder was set to a maximum of 1.460 MB. If more
was allocated, CCFinder would not load properly anymore.

First it was attempted to compare the seven complete releases of Mozilla in one detection run.
Since this input amounted to a total of 27,353,289 lines of C/C++ code in 88,538 files, it was not
expected that this run would succeed. Even after upgrading the system to 3,5 GB of RAM the test
failed. The result was considered neither surprising nor disappointing since the amount of data
would have been too big for a visual inspection even if the run would have succeeded.

The next attempt included only one complete release at a time. The maximum size was there-
fore reduced to 3,986,846 lines of code in 13,646files (these extreme values are achieved inMozilla
release 1.4). The clone detection could be executed with a peak memory usage of 2,04 GB. The
CCFinder output log files were generated without any problems. If Gemini can visualize the met-
rics and dot plot depends heavily on the value of the parameter defining the minimal length of
the detected clone candidates. A length of 30 tokens is most often used in the known experiments
and is therefore also used here as a default value. However, with larger size input, we often use
longer cloned fragments (50 – 70 tokens) in order to ensure the tool’s ability to visualize the results
in a still readable form. In the case of a whole release, 70 tokens were considered adequate and
still manageable by CCFinder. This resulted in a general overview of the clone situation in the
system that could be used to select further areas of interest. The resulting dot plots are shown in
Figures 5.1 to 5.4. The modules are arranged along the central diagonal as well as possible. Areas
of interest for further study – i.e., with a large percentage of duplicated code – can be identified
by clusterings of dots.

During this phase an additional problem with Duploc has been detected. In certain circum-
stances, Duploc does not correctly detect line breaks in input source code files. In that case, the
whole file is considered to be one long line. Since Duploc’s clone detection algorithm is line-based,
this means that a candidate can only occur if two files are completely equivalent which in reality
is of course never the case. All input files of our case study – however not the input we used for
test purposes during the first phase – were treated in this way which rendered Duploc virtually
useless to us. The reason for this behavior is unknown at present.

The final decision was to test seven releases of a single module at a time. That way, the evo-
lution of the clones could be examined over all releases while the size of the input was still small
enough to be handled by CCFinder and for the most part by Duploc. The output is also not too
cluttered to be understandable. We do however loose the possibility of comparing clones outside
a specific module – thus each module is considered to be a separate program. To cover this short-
coming, some additional clone candidates from different modules obtained in the detection run
of one complete release will also be taken into consideration.

It was also decided against using the header files (*.h) for comparison purposes. The reason
for this lies in the fact that these files generally only contain declarations and no functionality
(with the exception of a small proportion of inline functions). Furthermore, due to the rules used

1http://www.mozilla.org/releases/
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Figure 5.1: Dot plots for Mozilla releases 0.9.2 (a) and 0.9.7 (b) (70 tokens).

to parametrize the input in CCFinder, most declarations would be reported as candidates and
would have to be eliminated manually later on.

5.2.3 Clone Detection Runs
After determining the input size best suited for our needs – seven releases of one module at a
time – the clone detection phase was started by using all seven releases of Mozilla separately as
input for CCFinder. Unlike in later detection runs, a minimal clone size of 70 tokens was used,
which seems to be a lower boundary for inputs of this order of magnitude. Attempts with a
shorter length of clones invariably failed because of memory issues. The results obtained serve
only to create a first overview of how many clones are expected. It also shows if it is possible
to detect any significant change during the time interval under consideration – a determined
effort at refactoring could for example lead to a system-wide decline of code clones. The scatter
plots of the results of this phase are shown in Figures 5.1 to 5.4. These plots served to identify
modules containing a high amount of code clones. Which modules the visible concentrations of
code duplication belong to can be inferred from the affected directories. The concentration found
on the lower right end of the diagonal line is for example made up of directories belonging to
module “GFX and Widget – Mac”.
Out of a total of 95 modules, 15 were considered to contain a sufficient amount of cloned code

to be of interest for studying intra-module clones. The concrete selection of code clones for further
study started with the plots described above.
The dot plots obtained through code clone detection runs on entire releases of Mozilla were

also used to determine if there are inter-module clone pairs worth considering in a later phase.
Here, unlike in the selection of candidate modules, the focus was on individual files rather than
whole folders and modules. The description of the selection process is continued in Section 5.3.1.
The modules that were considered suitable for further study were then subjected to a more

thorough code clone detection run. All seven releases of each module were examined together to
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Figure 5.2: Dot plots for Mozilla releases 1.0 (c) and 1.3a (d) (70 tokens).

get an overview over both the code clones in one version as well as the changes inside a certain
cloned fragment introduced from one version to the next. Several inter-module candidates were
also subjected to these clone detection runs. As with the modules, all seven releases of a pair of
files were tested together. For both of these detections, the minimal clone size was lowered from
70 tokens to 30 tokens. This threshold is widely used in papers relying on CCFinder to detect
clones and can therefore be considered a quasi-standard (e.g., [KKI02, KSNM05]). As a lower
boundary of 30 tokens eliminates code clones that are too short to be considered important, such
a limit is reasonable. In our case study, a sequence of 30 CCFinder tokens represent about 2.4 lines
of C or C++ source code 2.

5.3 Identification of Suitable Clone Candidates

The role of this phase is basically as an intermediate between the detection runs described above.
Therefore the results obtained during the repeated cycle of the detection and this selection step is
covered in Section 5.2.

Work in this phase consisted in the comparison of dot plots generated by the clone detection
runs and the examination of the source code of the files involved to determine the validity and
interest of a given duplication. Insights gained during these examinations that are not relevant to
the application of the framework to the Mozilla case study are described in Section 5.3.3.

2The lines of code here include comments and blank lines even though these are usually not considered to be code
clones. When they are ignored, the length of code fragments rises to around 2.9 – 3.6 NCLOC.
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Figure 5.3: Dot plots for Mozilla releases 1.4 (e) and 1.6 (f) (70 tokens).

5.3.1 Selection of Code Clones
Not all code clone candidates that are detected by CCFinder can be used for the purpose of this
case study. One obvious problem are false positives. These were eliminated by manual inspection
before proceeding. Of the remaining clones, those of types 1 to 4 as described in Section 4.2.3were
selected as the most interesting because their relative lengths change during the evolution.
Another kind of candidate that has been considered unsuitable is a true clone that has more

structural than functional implications. Due to the parametrization taking place during every
CCFinder detection run, several candidates usually consist purely of sequences of similar state-
ments without much semantic content. Examples for this are sequences of #include–statements,
declarations of variables or switch–statements.
Because this case study covers seven subsequent releases of Mozilla in parts with substantial

changes, there are files that only appear in one or two releases altogether. Since clones in such files
do not providemuch evolutionary information, a lower limit of four releases was set in which any
file containing a clone should appear.
To determine the pairwise clone coverage values for each pair of the evaluated files, a simple

tool was developed and applied. It extracts the number of cloned lines of code from a given
CCFinder output file and calculates the non-commented lines of code directly from the source
files. In some phases during these calculations a problem with the way CCFinder logs its output
was detected. Despite the fact that CCFinder is supposed to eliminate blank lines and comments,
there are sometimes remnants of comments apparent in the representation of the code clones.
This seems to happen mainly if there are lines consisting of pure comments in the middle of a
cloned sequence. Instead of reporting two clones, the comment lines are also included. In the
calculations for this case study this leads in several cases to a clone coverage value larger than 1,
which should not be possible according to the definition. Since this value will only get larger than
1 if the clone coverage is anyways exceedingly high, these values were reduced to 1.3

3Another possibility would be very long sections of comments embedded in code clones. It was verified manually that
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Figure 5.4: Dot plots for Mozilla release 1.7 (g) (70 tokens).

5.3.2 Clone Coverage in the Case Study
A final criterion was the wish to include clones of as many different evolutionary classes as pos-
sible to achieve a sample of data that reflects the entire source code of Mozilla. These classes have
been defined in Section 4.2.3.

Altogether a sample of 31 files from 15 disjoint clone classes forming 21 clone pairs have been
selected and examined individually. The results of this examination can be found in Appendix
B. Hardly any of these pairs are of a single evolutionary type over the whole examined interval.
Most stable phases have during their lifetime. This leads to type 0 clones being present in 13 clone
classes. Nearly as numerous are type 3 and 4 clones which are represented in 11 respectively 12
classes. Not surprisingly type 1 – in two classes – and type 2 clones – present in only one class –
form a minority.

The sample of files selected feature a wide range of clone coverage values. As the files have
mostly been chosen because the cloned sections within the pairs changes over the seven releases
of this case study, there are interesting combinations of clone coverage values. However, the
sample is for precisely the same reason not a random sample that can be used for statistical and
regression analysis.

There are files that consist nearly entirely of clones of another file over all seven releases. The
most obvious example for this is a file whose clone coverage value starts at 0.82 in release 0.9.2
and rises to 0.97 until release 1.7. Other pairs’ clones remain more or less stable at very different
levels ranging down to 0.1 and smaller.

Other clones show more interesting behavior like a clone coverage value sinking from 0.8 to
0.27 over the course of seven releases. The largest observed difference between two subsequent
releases is from 0.51 to 0.07 – in about six months the size of the mutual clones has in this case
been reduced by about 86%, probably a sign of a major reengineering effort.

this is not the case where the value has been adjusted.



5.4 Extraction of Change Coupling Information 43

Clones completely disappearing are rare. The largest clone coverage value completely disap-
pearing in a subsequent release of the same file is at 0.04. Clones being introduced into two files
that did not contain any earlier is also not a common occurrence. However changes of the clone
coverage values by as much as 0.44 have been observed between two releases where there were
no clones present at first.

5.3.3 Additional Insights
The results described in this section are not directly related to the research questions treated in
this thesis. However, they might otherwise be of interest.
When a module is compared to a different release of itself, it is possible to detect the effects of

certain refactorings directly through patterns in the dot plots generated from the clone candidates.
One common refactoring technique is to move functionality from one or more files into a new
file (e.g., in the refactoring known as “Extract Class” [FBB+99]). This modification leads to an
identifiable pattern in the dot plots when one version of the module which is shown in Figure 5.5.
Basically the clones disappear from several files and re-appear in a new or different existing file
in the next version. The effect is only visible when two versions are compared to each other, not
when the two subsequent versions are only compared each to themselves. In the figure, (a) is the
row associated with file A in version 1.0. Column (c) represents file A in release 1.3a. The two
versions of the same file do not contain any clones. Instead, some functionality which in release
1.0 was in file A has been moved to a file B, which is new in release 1.3a. This file is associated
with column (b) and shows the moved fragment formerly of file A as a clone.

Figure 5.5: Example dot plot showing moved functionality.

5.4 Extraction of Change Coupling Information
During this phase the concept of change coupling is examined for the case study. It is so far
independent of the previous three steps except for the fact that the same sample files are used.
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Phases 3 and 4 together produce the input needed for further research in the following steps.
There is one major difference between the examination of code clones and that of change

couplings: the former involves the exploration of files at a given moment – the date of each new
release of Mozilla – while the latter must be investigated over a given interval. As Table 5.1
shows, the intervals coupled with a certain release are starting at the date where the previous
version was released and end the day prior to the release of the version in question. The reason
for this partitioning is that during the specified interval those changes have been implemented,
that lead to the current release. In the case of release 0.9.2 – the first release examined – an earlier
release (0.7) has been selected so that the interval leading to 0.9.2 is about the same length as that
leading to the other releases.

Release Date of Release Interval
0.9.2 June 28th, 2001 Jan 9th, 2001 – Jun 27th, 2001
0.9.7 December 21st, 2001 Jun 28th, 2001 – Dec 20th, 2001
1.0 June 5th, 2002 Dec 21st, 2001 – Jun 4th, 2002
1.3a December 13th, 2002 Jun 4th, 2002 – Dec 12th, 2002
1.4 June 30th, 2003 Dec 13th, 2002 – Jun 29th, 2002
1.6 January 15th, 2004 Jun 30th, 2003 – Jan 14th, 2004
1.7 June 17th, 2004 Jan 15th, 2004 – Jun 16th, 2004

Table 5.1: Mozilla releases with the time intervals relevant for the changes reflected therein.

A parallel to the evaluation of the code clones is the fact that the absolute value of the number
of change couplings is not sufficient. A similar metric as for the code duplications has therefore
been created.

5.4.1 Coupling Coverage in the Case Study
The coupling coverage values have been calculated for the same sample of files as the clone cov-
erage. Other than the clone coverage, the coupling coverage is observed during an interval. In
a first step, the values for each file have been calculated for any of the seven releases composing
the case study. The relevant intervals can be found in Table 5.1. Following this examination, the
coupling coverage has then been considered over the whole life cycle of the system until release
1.7.

Value Absolute Frequency Frequency in Percent
< 0.1 35 12.24 %

0.1 – 0.2 19 6.64 %
0.2 – 0.3 12 4.2 %
0.3 – 0.4 14 4.9 %
0.4 – 0.5 22 7.69 %
0.5 – 0.6 8 2.8 %
0.6 – 0.7 22 7.69 %
0.7 – 0.8 13 4.55 %
0.8 – 0.9 13 4.55 %
0.9 – 1.0 128 44.76 %

< 1.0 286 100 %

Table 5.2: Frequency of change coupling coverage values.
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There are some instances where one or both of two files sharing a cloned code fragment are
never checked in during a given interval. In this case, a division by zero would occur. To avoid
this problem, the value of the coupling coverage for those two files is for the interval in question
set to 0.
The evaluated files provided a total of 286 values for change coupling coverage. There is a

remarkable concentration on either end of the scale as Table 5.2 shows. One explanation for the
high percentage of values between 0.9 and 1.0 is the fact that most files in the sample have been
selected for their relatively high clone coverage. There are two examples of clone classes that
show coupling coverage of 1.0 in almost all cases. However, the sample also contains clone pairs
with a very low clone coverage. However, the sample cannot be considered randomly chosen.

5.5 Correlation of Clone Data and Change Couplings
We attempt to determine the impact of code clones on change couplings by correlating the values
gathered during the last two phases of this case study. The coupling coverage is interpreted as a
function of clone coverage.
Three adjustments have been made to the raw data obtained during the previous phases:

1. If the clone coverage is larger than 1.0 as described in Section 5.3.1, the value in question
has been reduced to 1.0 exactly.

2. If the coupling coverage results in a division by zero as described in Section 4.2.4, the value
is set to 0.0.

3. If the coupling coverage results in a value larger than 1.0 as described in Section 4.2.4, the
value is set to 1.0.

The first step in correlating the two different series of datawas an attempt to assess the importance
of the code clones in relation to the change couplings.

5.5.1 Classification of Results
Code clones are considered one of the major bad smells [FBB+99]. It is therefore expected that the
bigger the amount of duplication in a pair of files is, the more those files are coupled during the
subsequent evolution of the system. Likewise, a code clone that later on spawns change couplings
is considered more harmful than a clone that is hardly ever modified at the same time wherever
it is duplicated.
Any coupling represents changes in both files at the same time. What has actually been

changed is so far not determined. It was expected that mostly the duplicated source code frag-
ments were subject to change when the files are checked in together. Since CVS does not yet
automatically provide this information – the log only contains data about how many lines were
deleted or added, not however which lines – the changes were examined manually using cvs
diff.
To determine a scale to classify the impact of code clones on change couplings, the changes

that lead to the related check–inswere therefore examinedmanually and clustered into four types:

1. Random Changes: The changes made to the two files are not related through any code
clones – they might however concern methods with similar purposes that do not share du-
plicated code fragments.
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2. Comments / Includes: The changes only affect either comments in both files or #include–
statements. Neither of these types of code fragments is considered a true code clone even
though they might be the same in both files.

3. Methods /Names: The changes in both files only affect either names that have been changed
or changed method calls. Usually the definition of the methods in question is found in a
different class so that no further changes are made to the code of the files being examined.

4. Changed Clones: The changes occur in the duplicated fragments of both files at the same
time. These changes go further than changes covered by the previous classes and often
change the program logic.

A fair amount of indications for a connection between code clones and change couplings can be
found in the sample of files examined during this case study. The most obvious of these are pairs
of files that have a clone coverage value greater than 0.9 and that are coupled in every single case
when they were checked in. A good example, since clone coverage for one of the files is con-
tinually between 0.9 and 0.97 and for the other between 0.83 and 0.93 are mathml/base/src/
nsMathMLmunderFrame.cpp and mathml/base/src/nsMathMLmoverFrame.cpp. During
their evolution until Mozilla release 1.7 they are coupled in every single case of a check–in. Con-
sidering the very high clone coverage values for both files, it is not surprising that the changes
leading to any coupled check–in were never independent. Of the 42 examined check–ins, 7 were
caused by changes to either the comments or to #include statements. 10 changes concerned
method signatures or the renaming of variables or methods. The remaining 25 couplings were
all caused by changes to the cloned fragments – 16 of these were exactly equivalent in both files
(except for the different names of certain functions – usually an “over” in one file was replaced
with an “under” in the other). These two files are together with the remaining member of their
clone class a good example of a “copy–paste–modify” approach to programming. It is expected
that their maintainability would benefit from amajor refactoring effort. Since a very high percent-
age of change couplings can be directly linked to existing code clones, these duplications must be
classified as dangerous to the evolution of the Mozilla project.

Oppositely to the case treated in the previous paragraph, it is expected to see relatively low
values of coupling coverage in files that do not share much duplicated code. One example for
such a connection is the file gfx/src/windows/nsRenderingContextWin.cpp when it is
compared to gfx/src/xlib/nsRenderingContextXlib.cpp. Because of the different num-
ber of lines of code and check–ins in the two files, it is necessary to calculate both coupling cov-
erage and clone coverage separately for each. This results in 4 values for the two files. The clone
coverage of the first file turns out to be between 0 and 0.21 while the latter has values between
0 and 0.23. The coupling coverages are 0.17 and 0.35 respectively. It is however noteworthy that
these values can reach up to 0.8 and 1 when the focus is set to the developments in only one
single release. The files are coupled 39 times. Only 2 of these couplings concern real cloned code
fragments while a majority of 26 change couplings are caused by code sections that are not cloned
(although coupled changes are often made to methods with the same function). 5 couplings are
caused by changes to the comments or #include–statements and 6 concern modified method
signatures. Despite at times high coupling coverage values between two subsequent releases of
Mozilla, the relatively small percentage of code clones does not seem to cause major change cou-
plings. The impact of the code clones can in this case be considered harmless.

There are also interesting combinations of values that seem to contradict too close a relation-
ship between code duplication and change couplings. On one end of the scale there are files
containing a large proportion of mutual code clones, but are almost never changed at all and
even then only coupled rarely. Examples for such couplings are the files jpeg/cjpeg.c and
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jpeg/djpeg.cwhich form part of the Image Handling: JPEG module4 present in all releases of
Mozilla. In every release, they contain about 60 % of mutually shared code, but their coupling
coverage is still low – during the development, each of these files is checked in 5 times but only
once they are coupled. On closer inspection, these files and essentially the whole module turn
out to form part of a project independent of Mozilla. The files are maintained by the Independent
JPEG Group5 and the check–ins during the Mozilla project are mere updates of library files modi-
fied elsewhere. Since the files still are part of the Mozilla release, they are considered relevant. It is
possible that the duplicated code fragments cause couplings during their development, but those
clones are not relevant in the context of Mozilla. This kind of code duplication would therefore
be considered harmless in respect to the evolution of this case study.
The other extreme position is formed by files that show a high coupling coverage either in one

specific release or in total yet share only relatively few mutual code clones.
If only one release at a time is examined, it is possible to find examples where files with a

clone coverage values of less than 0.1 are coupled every time they are checked in. However, total
check–ins between two releases often amount to only a very small number. An example for this
behavior is the file intl/uconv/src/nsWinCharset.cppwhich in the time intervals relevant
for releases 1.6 and 1.7 is coupled with intl/uconv/src/nsMacCharset.cpp every single
time it is checked in. Total coupled check–ins only amount to 4 during this period. Of these
4 couplings, one was caused by a change to comments, one by a change in a method call, one
by totally unrelated changes and only one by the cloned fragment itself. Despite the very high
coupling coverage, such clones should in this context be considered harmless.
The second related anomaly mentioned concerns files with a perpetually large change cou-

pling value and relatively low clone coverage. The most obvious example for this is layout/
mathml/base/src/nsMathMLmsubFrame.cppof the MathMLmodule which is coupled with
layout/mathml/base/src/lnsMathMLmsubsupFrame.cpp in 97% of its check–ins over the
whole observed evolution. The clone coverage never exceeds 0.45 and drops to 0.32 by release
1.7. These two files are coupled 30 times during the period covered by the observed releases of
Mozilla. 12 of these couplings were connected directly to the duplicated code in the files and 5
were completely independent changes made to the files at the same time. The rest of the cou-
plings were either caused by simultaneous changes to comments and #include–statements or
to method calls when the method’s signature had been changed – these cases were not considered
to be caused by code clones. Only 40 % of the change couplings were therefore caused by code
duplication. The clones in these files are not considered particularly dangerous.

5.5.2 Correlation
When the clone and coupling coverage values are plotted against each other, the first impression is
that the resulting distribution is rather random and hard to approximate by any regression. Figure
5.6 shows the aggregation of the calculated values for the seven releases of Mozilla. The clone
coverage values are calculated for each release. The coupling coverage values corresponding to a
release are calculated during the time period before the release. The periods are defined in Table
5.1.
Because the exact time of the Mozilla release in which the clones and couplings occur are not

relevant, all calculated values can be aggregated into one chart to clarify the distribution. This
irrelevance of the exact time is based on the fact that the duration of the intervals are roughly
equal and the method of calculation is insensitive to the exact point on the timeline on which the
values are calculated. The aggregate chart is shown in Figure 5.7.

4http://www.mozilla.org/owners.html
5http://www.ijg.org
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Figure 5.6: Clone and coupling coverage values for each release of Mozilla.

In the Charts 5.6 and 5.7, all coupling coverage values have been calculated for the interval of
roughly half a year between subsequent releases of Mozilla. During these intervals, the absolute
number of check–ins and couplings for individual files is generally low, often leading to extreme
coupling coverage values of 0 or 1. In order to obtain values that are less reliant on very small
numbers, the interval for the last release of Mozilla has been extended. In this case, all changes
prior to the release date of Mozilla 1.7 have been considered to be in this interval because ulti-
mately all of these changes lead to release 1.7 (the same reasoning has been applied previously to
the shorter intervals leading to each release). The resulting chart is shown in Figure 5.8. These
first observations show two results. The first is an impression of randomness – there is no obvious
relation between code and coupling coverage visible in the data processed. The second conclu-
sion is a consequence of the first. The amount of data obtained from the hand-picked sample of
code clones is neither big enough to lead to meaningful conclusions nor is the sample statistically
independent as the clones have been selected because of certain attributes.

To obtain a sample that is more suitable it was decided to obtain clone and coupling coverage
data for a complete release of Mozilla. The release selected for the detection of clones was once
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Figure 5.7: Aggregate clone and coupling coverages in Mozilla releases 0.9.2 – 1.7.

again 1.7. CCFinder has been configured to detect clones of a minimal length of 30 tokens which
was in this case possible as no visualization in Gemini was necessary. Because of the large size
of clone data, false positives could not be sorted out manually. But since long clone candidates
tend to be real clones and the amount of data obtained is large, false positives should not have
a major influence on the final outcome. The coupling coverage values were calculated for the
whole period prior to the release date of Mozilla 1.7. Files that contain no clone candidates were
not processed.

The calculations required a computation time of a little more than 15 hours and resulted in
139,523 clone coverage / coupling coverage tuples. The resulting chart is shown in Figure 5.9.
The visible horizontal “bands” of values correspond with often obtained ratios like 0.5 or 0.2.

Of these combinations, 109,090 tuples or 78.19 % have clone coverage values of less than 0.2
while 30,433 or 21.81 % have values ranging from 0.2 to 1.0. As has been determined earlier,
clone coverage values below 0.2 do not seem to have much influence on the change coupling
behavior during the evolution of the system. It is expected that these relatively low level values
of clone coveragewill dominate any regression on the whole set of data. A visual inspection of the
chart also implies that these values are associated more or less randomly with coupling coverage
values.

The number of input combinations of X– and Y–values for a regression analysis is in this case
study limited to 65,536. Therefore, a regression analysis will be carried out using first a random
sample of the complete set of values and second all values with a clone coverage larger than 0.2
as input. This procedure will result in a conclusion about the expected behavior in the whole
system and about the behavior of larger code clones (which are usually considered to be more
dangerous). The criterion to determine the significance of a regression analysis is the coefficient
of determination or R2–value, which is a measure for the percentage of statistical spread that is
explained by the regression function. The regression analysis is calculated using the least squares
method.
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Figure 5.8: Clone and coupling coverage combinations for release 1.7 with aggregate couplings.

The distribution of data points in the generated chart 5.9 seems to indicate that a linear or
logarithmic regression might be most appropriate although there are in both cases many values
that deviate from such a calculated function. The distribution does not raise expectations of a very
clearly defined regression function as the clone / coupling coverage combinations are seemingly
random.

In total, regression analysis was conducted over three different random samples of 65,536
values each. In any case, theR2 valuewas better for linear than for logarithmic regression over the
same sample. A linear regression resulted in the best fitting function with the highest coefficient
of determination of 0.702:

CouplingCoverage(A, B, I) = 1.038 · CloneCoverage(A, B) + 0.097

The sample data used for this regression is shown in Figure 5.10. The resulting equation explains
70.2 % of the scattering visible in the chart. The other attempts at regression analysis yielded even
lower R2 values.

Similar regression analyses were computed for the 30,433 instances of data where the clone
coverage was above the 0.2 threshold described above. In this case, no random sampling was
necessary as all values could be evaluated. The best fit for these clone–intensive input combi-
nation was reached with a logarithmic regression. However, the R2 value even for this instance
was only 0.248 meaning that not even a quarter of the scattering is explained by the regression
function. A linear regression with a coefficient of determination of 0.2088 resulted in a straight
line with the equation

CouplingCoverage(A, B, I) = 0.512 · CloneCoverage(A, B) + 0.4781

which is not a very close fit to the results obtained by a sample of all input values.
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Figure 5.9: Clone and coupling coverage for the complete Mozilla release 1.7.

5.5.3 Conclusion
The findings during this case study seem to indicate a certain correlation between cloned frag-
ments of source code and change couplings during the evolution of a software system. This con-
nection was expected from previous work starting with [FBB+99]. Usually the larger the clone
coverage between two files is, the more often these files are coupled. It is however neither pos-
sible to conclude that code duplications are always reflected in high change coupling coverage
values nor is the opposite always true. From the results of this case study it is impossible to defi-
nitely exclude the possibility that there is in fact no statistically relevant correlation between code
duplications and change couplings.
In this case study, a clear mathematical relation between code clones and change couplings

cannot be established with any certainty. Even though for the entirety of all clone / coupling
coverage tuples a mathematical relation with a reasonable significance can be established, in the
case of files with a high percentage of code clones, this correlation becomes more and more in-
significant.
Change couplings can have causes other than code clones. Files fulfilling similar roles in the

system often are changed together even though they might not contain many duplicated code
fragments. On the other hand, there are also code clones that can be classified as “harmless” since
they are almost never changed at all and therefore very rarely coupled.
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Figure 5.10: Sample used for regression.

Despite these exceptions, the general tendency for files with a high clone coverage value is to
be coupled more often than files with a lower percentage of duplications despite the fact that this
relation cannot be expressed with a simple mathematical equation.

An examination of clone and coupling coverage can be used to identify groups of files that
would benefit from a determined refactoring effort. In this case study, several groups of files
with medium to high clone coverage values have been found that are coupled nearly every sin-
gle time the files are checked in to CVS. With modern refactoring techniques and paradigms of
object–oriented software development, such “dangerous” fragments of cloned source code can be
addressed.

It is not possible to distinguish harmless from dangerous code duplications simply by looking
at the results of a code clone detection run on only one release of a software system. There are
more factors to be considered to make a prediction of the future behavior of a code duplication.

It is however save to say that the larger a cloned code fragment is in percentage of its en-
vironment, the higher is the probability of it becoming “dangerous” during the evolution of a
system.
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5.6 Towards a Metric for the Impact of Code Clones

5.6.1 Definition of a Metric
Because of the difficulties of establishing a mathematical relation between code duplications and
change couplings described above, the definition of a significant metric is almost impossible. The
following equations are therefore not considered as a proven mathematical approach, but as an
attempt at classifying the possible danger a code clone might pose to the future evolution of a
system.
The metric that is developed in this section is not intended to provide an absolute ranking of

the danger inherent to a number of clones. It is only possible to assign to a file a value in relation
to the other clones of a sample input. The statement made is therefore along the lines of “File A
contains clones of file B. File A also contains clones of C. But because of the coupling history and
the size of the clones, the probability of file A to be coupled with B in the future is higher than the
probability of A being coupled with C”.
As has been established in Section 4.2.6, factors influencing this decision are not only clone

and coupling coverage, but also the absolute length and number of couplings of a pair of files.
Because of the relatively unreliable relations between the two coverage values obtained through
regression analysis, the use of historical data can be considered safer than the exploitation of these
equations. The premises for further development are therefore:

1. Files that have been coupled in the past are likely to be coupled in the future,

2. Files containing long cloned fragments of each other are likely to be coupled,

3. Increasing clones lead to increased coupling, and

4. Decreasing clones lead to decreased coupling.

First it can be assumed that all parameters remaining unchanged, the “danger” of a change cou-
pling during an interval If in the future remains the same as during a similar interval Ip in the
past:

Danger(A, B, If ) = CouplingCoverage(A, B, Ip)

As has been explained earlier, change couplings can occur for many reasons that are not directly
connected with code clones. Since the intention of this metric is to assess the danger inherent to
a clone, the presence of clones is considered more important than the occurrence of couplings.
Therefore the introduction of clone coverage leads to

Danger(A, B, If ) = a · CouplingCoverage(A, B, Ip) + b · CloneCoveragen(A, B)

where n is the current version and a and b are factors so that a < b and a + b = 1.
Recent changes in the clone situation must be considered and are as of now not yet reflected

separately in the equation. If the clone coverage increases, the danger inherent to the clone should
likewise increase:

Danger(A, B, If ) = a · CouplingCoverage(A, B, Ip) + b · C

where

C = CloneCoveragen(A, B) + ∆CloneCoverage(A, B)

and

∆CloneCoverage(A, B) = CloneCoveragen(A, B) − CloneCoveragen−1(A, B)
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Danger(A, B, If ) has so far been defined in a way that 0 ≤ Danger(A, B, If ) ≤ 1 always holds
in practice. CloneCoverage(A, B) can, despite the addition of ∆CloneCoverage(A, B), never get
larger than 1 nor smaller than 0 because of the initial definition of clone coverage.

Finally, the absolute length of a code clone must be introduced. The reason for this is the
fact that larger code clones are usually difficult to maintain while on the other hand they often
offer more possibilities for refactorings than small clones. To keep the value of Danger(A, B, If )
between 0 and 1, the length of the code clone again has to be set in proportion. Since the goal of
the metric is to compare only the relative danger of the input sample, it is reasonable to calculate
a value

RelativeLength(A, B) =
ClonedLines(A, B)

max(ClonedLines(X, Y ))
where max(ClonedLinesX, Y )) is the maximal length of a cloned fragment in the input sample
of files. On inclusion into the equation, RelativeLength(A, B) is allocated a parameter c so that

Danger(A, B, If ) = a · CouplingCoverage(A, B, Ip) + b · C + c · RelativeLength(A, B)

so that a + b + c = 1 and a < b + c to keep the focus on the code duplications.
The values of a, b and c are not fixed but should be constant to produce comparable results.

They reflect the emphasis that is being placed on the different aspects. It makes sense to assign
values of about 0.3 – 0.4 for each of these parameters with the value of each b and c – which are
the clone related parameters – being a bit higher than the value of the coupling related parameter
a. Factors a, b and c cannot be universally fixed. They must instead be determined separately for
every project.

When the Danger–values for a certain set of files has been calculated, it is possible to rank
these files in the order of problems they are likely to cause during the future evolution of the
system. This metric is however strictly limited to the comparison of files for which the Danger–
values have been calculated together. This ranking can only give a general idea which files could
be of interest for further study. To gain further insights, the input data should at the same time
be visualized as this technique shows more clearly the scale of the metrics that have been used to
create the Danger–value.

On its own, the Danger–value is inadequate to come to a definite decision about a certain
clone. Like other metrics that condense complex circumstances into a single number, it canmerely
serve as an indicator or starting point for further investigation.

To evaluate the validity of this proposed metric, it can be calculated for a certain release of
a case study. Then, the forecast is compared to the actual change coupling values during the
later evolution of the system. For this examination, clones of types 1 to 4 as described in Sec-
tion 4.2.3 should be used as they should show a marked difference. In the context of Mozilla,
possible candidate files for this survey are e.g., gfx/src/os2/nsRenderingContextOS2.cpp
and gfx/src/xlib/nsRenderingContextXlib.cpp. These files contain no shared clones
in Mozilla releases 0.9.7 and 1.0 but in 1.3a they share about 20 % of their source code. Other
examples can be found in Appendix B.

5.6.2 Visualization
The reduction of the various factors influencing the impact of code clones on change couplings
is problematic. This is shown in the previous section. The visualization of the same factors is
more meaningful to the human observer. The visualization technique described in 4.2.6 has been
applied to several modules of Mozilla.

The scope of the colors and sizes of dots used in a chart is limited to the chart they appear in.
Because of that the figures should not be compared among each other – the results would not be
meaningful.
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Figure 5.11: Visualization of Mozilla modules MathML and JPEG (Release 1.7).

Figure 5.11(a) shows the situation for the MathMLmodule of Mozilla release 1.7. Of particular
interest for a reengineering effort would be the 5 files shown in the upper right corner. They are
very often coupled with other files and share large fragments of duplicated code. The module
consists of 26 C++ files between which 470 distinct pairs of files sharing code exist.
The situation shown in Figure 5.11(b) is very different. The 52 C files of module JPEG form

230 distinct pairs which share code. The dots are all equally red because every file of the module
was coupled exactly once during the period covered in this chart. In this case, the selection of
candidates for a refactoringwould have to rely on the length of code clones and the clone coverage
alone.
These visualizations do not allow to automatically rank the code clones by the degree of main-

tenance problems they are likely to cause. However, a software engineer can get an overview and
decide which files are likely candidates for a refactoring. To facilitate this decision further, the
charts would need to be annotated with additional information about the file a dot represents.
Also, additional charts showing what color and size corresponds to which amount of couplings
respectively length of clones.

5.7 Implementation of a Prototype Tool
It has been decided that the implementation should not provide a stand–alone tool. A collection of
library classes implementing certain aspects of the framework has been considered more useful.

5.7.1 Structure of the Library Classes
The implementation of the framework upon which this case study is based consists of several
classes considered to be library classes for inclusion into other larger tools. The five functions
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presented in Section 4.2.7 are divided into specialized classes implemented with Java 5.0. Several
additional classes are provided in order to model the environment or to provide support.

Figure 5.12: UML class diagram showing the implemented library classes.

The classes are:

• CCFinderInputFileGenerator offers functionality to create an input file for CCFinder,

• CloneParser is an abstract class to read in and tokenize a textfile,

• CCFinderParser is an implementation of CloneParser to read in a CCFinder output file
and extract information about code clones and the affected files,

• CFileParser is an implementation of CloneParser to read in a C or C++ file and provide
functionality to filter it for irrelevant lines of code,

• Metrics provides methods to calculate the various metrics described in the framework,

• RHDBConnectionmanages the connection and queries to the RHDB MySQL database,

• ClonePair provides an internal implementation of a clone pair,

• DataFilemodels a file with additional information added,

• NoCloneDataException is an Exception to handle problems caused by the processing of
code clone data, and

• NoDBConnectionException is an Exception to be thrown if no connection to the database
has been established.
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The dependencies of the various classes are shown in UML diagram 5.12. For the sake of
clarity, the method parameters have been omitted in the diagram.

5.7.2 Usage
The classes have been developed using Java 5.0 and can be used like any other Java classes. Their
interfaces are described in standard Javadoc format and are therefore not described in detail in
this document.
Two requirements exist that are currently not implemented in the library files. The first is

the possible need for an SSH–tunnel in case the release history database is accessed from outside
its network. This connection will have to be established prior to connecting to the RHDB by an
external program.
The second requirement concerns CCFinder. Because the source code of this clone detection

tool is not available, it could not be integrated to generate information about duplications auto-
matically. It is therefore required to generate a standard CCFinder output file for further process-
ing the code clone data. This file may not be alteredmanually because otherwise, the correct work
of the library classes cannot be guaranteed.
For larger calculations, the classes are very memory and time consuming. We recommend to

allocate a Java heap space of more than 500 MB.
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Conclusion

6.1 Contribution
This thesis presents a survey of the impact of code clones to change couplings and therefore the
maintainability of a industrial–scale software system. That such a relationship exists has been
postulated for several years but it has not been quantified yet.
The following points are concrete results of the development of the framework and of its

application to the case study:

• A framework for the correlation of code clones and change couplings has been developed,

• Different code clone detection approaches and tools have been evaluated,

• Metrics for the evaluation of code clones in relation to change couplings have been pro-
posed,

• A visualization technique for these metrics has been proposed, and

• A set of library classes implementing certain aspects of the framework have been produced.

An approach to finding a correlation between code clones and change couplings has been devel-
oped that is not limited in its use to the case study to which it has been applied – it is essentially
independent of the type of system or of the programming language in which the system is writ-
ten. It defines a framework that can be used in other cases with a much reduced amount of effort
and time.
The evaluation of the code clone detection tools was conducted with respect to availability,

scalability and above all usability. These three parameters are instrumental for the applicability of
these tools to large scale software systems and the subsequent further processing of the generated
output data.
The metrics defined are relatively simple and all of them need access to the system’s source

code and to a database containing historical release and modification data based for example
on a version control system. A mathematical and quantifiable relation between code clones and
change couplings could not be established because of the random character of this supposed
connection in the case study. Therefore the final attempt at assessing the danger inherent to a
code clone based on historical data and information generated by detection tools is rudimentary
at best and possibly inadequate for other applications.
The visualization technique that has been developed offers a different and probably more

practicable approach to the detection of problematic code clones. If this method could be imple-
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mented and embedded into a software reengineering environment, it could potentially offer a
useful guidance in the decision which clones are to be refactored.

The implemented library classes offer the possibility to automate large portions of the frame-
work presented in this thesis. They were kept general enough to be useful in different environ-
ments.

The final result of this thesis is the implication that at least in this case study, the correla-
tion between code clones and change couplings is too complex to be expressed trivially. For a
significant distinction between clones that are irrelevant to the evolution of a system and clones
that are harmful, more information is needed than what can be obtained automatically. Despite
sophisticated tools that are available, the judgment of the software engineer is still needed.

6.2 Lessons Learned
Important insights have been gained in different areas: during the application of different tools
and in a general overview of the relationship between clones and change couplings.

6.2.1 Tools
Clone Detection Tools

The evaluation of different code clone detection tools resulted in the selection of CCFinder and
its visualization interface Gemini as the main program used for the case study. CCFinder was
considered the most powerful of the available tools. It is also still being supported and develop-
ment continues – during the six months of the case study, two new versions have been released.
Shortly after the end of the period of this thesis, in October 2005 a major update named CCFind-
erX is expected to be released1. This update should further increase the usefulness of CCFinder.

CCFinder does also have some slight shortcomings. The different transformation rules de-
scribed in Chapter 2 can supposedly be activated or deactivated individually for a detection run
[Bel02]. The documentation does not cover this point and there does not seem to be a way to
influence these rules from the Gemini user interface. The format of the output file is also not com-
pletely explained. Entries that seem to concern the aforementioned rules – this has been deduced
that they concern CCFinder’s mysterious -r option – are not mentioned.

Another problem concerns the visual output presented in Gemini. The tool does not offer a
way to either export or print these graphs and metrics directly. Especially the metrics calculated
by Gemini are for that reason lost for further processing.

These shortcomings should in no way diminish the fact, that CCFinder has been an excel-
lent asset and a very well usable tool in the code clone detection domain. With the upcoming
CCFinderX the tool also has the potential to become even better.

During the application of CCFinder to the case study, the standard options were found to be
adequate. As in most other case studies using this detection tool, a minimal clone length of 30
tokens has been determined to give the best balance between fine granularity and understand-
ability of the output. For very large input sizes (like entire releases of Mozilla), this threshold had
to be raised to up to 70 tokens. The problem lies not in the actual detection process but in the
visualization. Visualization of large input sizes needs a lot of RAM – even though the computer
used for these evaluations was well supplied with memory, Gemini still runs out of Java heap
space. If the allocated heap space exceeded 1,460 MB, the tool would not load properly anymore.
Hopefully this shortcoming will be addressed in later releases. It has to be noted that it is still

1http://www.ccfinder.net
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possible to run detections with a 30 token threshold and have to the output saved for further
external processing – only the visualization with Gemini is impossible.
The other code detection tool selected for application to the case study was Duploc. How-

ever, this program developed a problem processing the Mozilla files: the linebreaks were ignored
resulting in every file having a length of exactly one line. Because of the line–based approach
to detection used in Duploc, no clones at all were detected in Mozilla. Duploc was also apt to
terminate certain processes with Smalltalk error messages.
Duploc has the undeniable advantage that its source code is available and that a user proficient

in Smalltalk can therefore adapt the tool to his needs or correct certain problems himself.

Release History Database

The use of the release history database was unproblematic because of the availability of expert
advisers.
One challenge with the RHDB is that it has been developed further since the publication of

the last description. Therefore, there is in some cases no explicit documentation of the meaning
of certain fields (including for example exact definitions of time slots used in various tables).
A question has also arisen about the cvsitemcoupling table. Not all couplings that are

expected after the examination of the corresponding cvsitemlog entries are present.
The last finding might offer an explanation of the former question, although this has not been

examined. It is possible for two files to be coupled more than once during a certain time slot if one
of them is checked in twice. If it is desirable for files to be potentially able to have more couplings
than check–ins depends on the intention of the database and is not explored further within this
thesis.

6.2.2 Correlation between Clones and Change Couplings
The long suspected relation between the amount of code clones present in a system and the subse-
quent change couplings during the evolution of the system could neither be proved nor disproved
as a result of this case study. The results are too ambiguous and seemingly random.
For several instances, proof for a connection could be provided by manual inspection of all

the changes. The problem with this approach is a matter of time. For a large system it is certainly
not possible to do such a manual survey economically. If however suitable techniques – e.g., vi-
sualization – are applied, the candidates for further manual inspection and eventual refactorings
can be reduced to a more manageable size.
A final observation concerning code clones has been made during the implementation of the

library classes: despite the fact that code duplication and all their problems have been in our mind
permanently for half a year, it seems impossible to write even simple source code completely
devoid of code clones.

6.3 Future Work
This thesis has proposed a framework for the evaluation of the impact of code clones on change
couplings and software evolution. It has been applied to the Mozilla project but it remains to be
seen if it is also applicable to other case studies developed in a different way. Possibly such case
studies produce more generally applicable predictions for the danger inherent to a certain clone.
To completely automate the examination of the relationship between code duplications and

change couplings it should be possible to access information about what part of a system has been
changed in order to determine if the coupling was indeed caused by a clone. This information is
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not obtainable from CVS but would greatly simplify the maintenance of a system. Therefore an
implementation of such a feature into CVS would be desirable.

The metric for the danger inherent to a clone has only been defined sketchily in this thesis. It
should be tested in larger case studies in order to determine its significance and the best values of
the parameters not defined here.

Finally the embedding of the library classes implemented in course of this thesis could en-
hance the efficiency of making decisions about where to apply refactoring techniques to a system
during its evolution. To achieve this goal, it would be necessary to automate the framework as
far as possible to relieve the maintenance engineer’s workload. A combination of the described
visualization technique with the possibility of source code browsing implemented to work with a
major integrated development environment could provide a powerful tool do assess the potential
problems source code clones can cause in a system.

The development and maintenance of software is a difficult and very important field of engi-
neering due to the continued computerization of the world. If this thesis could trigger some train
of thought that ultimately helps to make it a little bit less complex, its goal has been achieved.



Appendix A

List of Required Tools

• CCFinder: http://www.ccfinder.net

• Gemini: http://www.ccfinder.net

• Duploc: http://www.iam.unibe.ch/ rieger/duploc/ (as of July 2005)

• CVS: http://www.cvshome.org

• VisualWorks 3.0: http://smalltalk.cincom.com

• Java 5.0: http://java.sun.com





Appendix B

Calculated Clone and Coupling
Values
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