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ABSTRACT
In this paper we take the problem of a market-based P2P
backup application and carry it through market design, to
implementation, to theoretical and experimental analysis.
While the long-term goal is an open market using real money,
here we consider a system where monetary transfers are pro-
hibited. We first describe the design of the P2P resource ex-
change market and the UI we developed. Second, we prove
theorems on equilibrium existence and uniqueness. Third,
we prove a surprising impossibility result regarding the lim-
ited controllability of the equilibrium and show how to ad-
dress this. Fourth, we present a price update algorithm that
uses daily supply and demand information to move prices
towards the equilibrium and we provide a theoretical and
experimental convergence analysis. The market design de-
scribed in this paper is already implemented as part of a
Microsoft research project on P2P backup systems and an
alpha version of the software has been successfully tested.

Categories and Subject Descriptors
J.4 [Computer Applications]: Social and Behavioral Sci-
ences—Economics

General Terms
Algorithms, Design, Economics

Keywords
Market Design, P2P, Online Backup, Exchange Market

1. INTRODUCTION: P2P BACKUP
With the increasing importance of information technology

in our lives, we are also more and more dependent on being
able to readily access all of our data all the time. However,
users regularly lose valuable data because their hard drives
crash, their laptops are stolen, etc. Already in 2003, the an-
nual costs of data loss in the US was estimated to be $18.2
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Billion.1 With broadband connections becoming faster and
cheaper, online backup systems are becoming increasingly
attractive alternatives to traditional backup. There are hun-
dreds of companies offering online backup services, e.g., Sky-
Drive, Idrive, Amazon S3. Most of these companies offer
some storage for free and charge fees when the free quota is
exceeded. All of these services, however, rely on large data
centers and thus incur immense costs. The motivation for
peer-to-peer (P2P) backup systems is that idle resources on
the computers of millions of users can be used to avoid these
costs. While the total network traffic increases with a P2P
solution, the primary cost factors that can be avoided are 1)
costs for hard drives, 2) energy costs for building, running
and cooling data centers2, 3) costs for large peak bandwidth
usage, 4) personnel costs for computer maintenance. In a
P2P backup system, these costs almost disappear because
we can use lots of otherwise idle resources.

The main idea of P2P backup is that users provide some
of their resources (storage space, upload bandwidth, down-
load bandwidth, and online time) in exchange for using the
backup service. A study performed by Microsoft in 2008
showed that about 40% of Windows users have more than
half of their hard disk free and thus could be excellent candi-
dates for using a P2P backup system. The rapidly decreas-
ing costs for large hard drives might make P2P backup even
more attractive in the future. In our own recent study [13],
we showed that many users are not willing to pay the high
fees for server-based backup and about half our participants
said they would consider using P2P backup instead. Thus,
there is definitely potential for P2P backup applications.

1.1 The Hidden Market Approach
Our P2P backup system is novel in that it uses a market to

allocate resources, more efficiently than a non-market-based
system could. We have implemented and successfully tested
the system in alpha version. During the design phase for
this system we followed a new paradigm that we recently in-
troduced called “Hidden Market Design” [14]. The goal of a
hidden market is to hide some of the complexities of the mar-
ket from the user and to make the interaction for the user as
seamless as possible. A P2P backup application is a partic-
ularly good example for hidden market design because the
application targets millions of technically unsophisticated

1http://gbr.pepperdine.edu/033/dataloss.html
2In 2008, data centers in the US were responsible for about
3% of the country’s energy consumption. Note that a P2P
backup system cannot only reduce costs but is also more
environmentally friendly due to reduced carbon emissions.



users, in a domain where markets/trading/currency etc. are
very unnatural. As a result of this hidden markets approach,
our resulting design is very unusual in that we provide our
users with an indirect way to express their preferences.

Each resource in the market has a price, and the relative
prices reflect the scarcity of the resources. The market de-
sign addresses the combinatorial nature of resources, namely
that all users must provide a certain amount of all resources,
even if they currently only consume a subset of them. For
example, a user who only contributes space is useless to the
system because no files could ever be sent or received from
that user if no bandwidth is provided. The design must
also allow users to express idiosyncratic preferences regard-
ing how much of each resource they want to supply. Some
users might need their own disk space a lot and prefer to sac-
rifice their internet connection. Other users might use their
bandwidth for services like VOIP or file-sharing and might
have a high disutility if the quality of those services were af-
fected. We allow different users to provide different ratios of
their resources, and we update prices regularly taking into
account aggregate supply and demand.

1.2 Overview of Results
In this paper we present our market design for a P2P

backup system and provide a theoretical and experimen-
tal analysis of its properties. At all times, the design and
analysis was done for the actual implemented system. Our
approach is novel and different from related work in that we
follow the hidden market design paradigm [14] and use a very
indirect market model. In our system, users do not contin-
uously specify demand and supply vectors but instead only
periodically choose bounds on their future maximum supply
and demand, which makes the system much more usable.

After introducing an economic model, we define a safety
property that shall guarantee that the system can always sat-
isfy new incoming demand. Then, we define a buffer equilib-
rium, which is an equilibrium defined on supply and demand
bounds. We prove that this equilibrium exists, is unique,
and satisfies the safety property. However, we also show that
the equilibrium cannot be easily controlled, in particular the
size of the supply side buffer is out of the market operator’s
control. We explain the origin of this counter-intuitive result
and show which design changes would be necessary to give
the market operator more control. A price-update algorithm
is introduced that takes system-wide supply and demand in-
formation and updates prices to drive the market towards
the buffer equilibrium. Analytical and experimental analysis
shows reasonable convergence speed when the initial price
vector is chosen close enough to the equilibrium.

1.3 Related Work
In recent years there has been much research on P2P stor-

age systems, electronic markets, distributed accounting, re-
source exchange systems, etc. Almost 10 years ago, the re-
search projects OceanStore [8] and FarSite [3] already inves-
tigated the potential of distributed file systems using P2P.
Both projects, however, did not do any kind of market de-
sign. More recently, researchers have looked at the incen-
tive problem, often with the primary goal to enforce fairness
(you get as much as you give). Samsara [5] is an accounting
scheme that allows for fairness enforcement. In contrast to
our design, their scheme is fully distributed. While such a

design has some advantages, it prevents the use of sophisti-
cated pricing and payment mechanisms that we employ.

The idea to use electronic markets for the efficient alloca-
tion of resources is even older than ideas regarding P2P stor-
age systems. Already in 1996, Ygge et al. [16] proposed the
use of computational markets for efficient power load man-
agement. More recently, grid networks and their efficient
utilization have gotten more attention [9]. Fundamental to
these designs is that participants are sophisticated users able
to specify bids in an auction-like framework. While this as-
sumption seems reasonable in energy markets or computa-
tional grid networks, we are targeting millions of users with
our backup service and thus we cannot assume that users
are able to directly act as traders on an exchange market.

The two papers most similar to our work are by Aperjis et
al. [2] and Freedman et al. [7]. They analyze the potential
of exchange economies for improving the efficiency of file-
sharing networks. While the domain is similar to ours, the
particular challenges they face are quite different. They use
a market to balance supply and demand with respect to
popular or unpopular files. However, in their domain there
is only one scarce resource, namely upload bandwidth, while
we must design an exchange market for multiple resources.

There exist multiple P2P backup applications that are be-
ing used in practice. The application most similar to ours
is Wuala (www.wuala.com). However, none of these systems
are market-based and do not allow different users to pro-
vide different resource ratios. Thus, these systems exhibit
economic inefficiencies compared to our exchange market.

In our own prior work, in [13], we have studied the role
user interface (UI) design plays for the design of hidden mar-
kets, and we have described in detail the design and evalua-
tion of a new UI for the P2P backup application. This paper
complements that work: we only briefly describe the UI, to
the degree necessary to understand our model, and focus on
the market design and analysis. This paper is a significantly
extended version of a previous workshop contribution [12].

2. THE P2P RESOURCE MARKET
Our system uses a hybrid P2P architecture where all files

are transferred directly between peers, but a dedicated server
coordinates all operations and maintains meta-data about
the location and health of the files. The role of the server
in this system is so small that standard load-balancing tech-
niques can be used to avoid scaling bottlenecks.

Each user in the system is simultaneously a supplier and a
consumer of resources. A single peer on the consumer side
demanding a service (backup, storage, or retrieval) needs
multiple peers on the supplier side offering their resources
(space, upload and download bandwidth, and online time).
The production process of the server (bundling multiple
peers and coordinating them) is essential, turning unreli-
able storage from individual peers into reliable storage. Note
that each peer on the supplier side offers a different resource
bundle while each peer on the consumer side gets the same
product, i.e., a backup service with the same, high reliability.

Erasure Coding and Replication. One natural concern
about P2P backup is that individual users have a much lower
availability than dedicated servers. Thus, a P2P system
must maintain a higher file redundancy to guarantee the
same file availability as server-based systems. Simply storing
multiple file copies would be very costly. Fortunately, we can



significantly reduce the replication factor by using erasure
coding [10]. The erasure code splits up a file into k fragments,
and produces n > k new fragments, ensuring that any k of
the n fragments are enough to reconstruct the file. Using this
technique, we can achieve the same high reliability as sever-
based systems while keeping replication low. For example, if
users are online 12h/day on average, using erasure coding we
can achieve a file availability of 99.999% with a replication
factor as low as 3.5, compared to simple file replication which
would result in a factor of 17.

Note that the process for backing up files always involves
four steps. First, the user’s files are compressed. Then the
compressed files are automatically encrypted with a private
key that only the user has access to (via Microsoft LiveID).
Then, the encrypted file is erasure coded, and then the in-
dividual fragments are distributed over hundreds of peers.
Using this process, the security of our P2P backup system
can be made as high as that of any server-based system.

Basic Operations in the Backup System. We consider
the following five high-level operations:

1. Backup: When a user performs a backup, file frag-
ments are sent from the consumer to the suppliers.

2. Storage: Suppliers must persistently store the frag-
ments they receive (until they are asked to erase them).

3. Retrieval: When a user retrieves a backup, file frag-
ments are sent from the suppliers to the consumer.

4. Repair: When the server determines a backed up file
to be unhealthy, the backup is repaired.

5. Testing: If necessary, the server initiates test opera-
tions to gather new data about a peer’s availability.

Table 1: Operations and their Required Resources.
Operation Resources Required from Suppliers

1. Backup Download Bandwidth
2. Storage Space
3. Retrieval Upload Bandwidth
4. Repair Download and Upload Bandwidth
5. Testing Download and Upload Bandwidth

Prices, Trading & Work Allocation. For now, mone-
tary transfers are prohibited and all trades in the market are
done using a virtual currency. Each resource has a price at
which it can be traded and in each transaction the suppliers
are paid for their resources and the consumers are charged
for consuming services. Prices are updated regularly accord-
ing to current aggregate supply and demand, to bring the
system into equilibrium over time.

Trading is enabled via a centralized accounting system,
where the server has the role of a bank. The server maintains
an account balance for each user starting with a balance
of zero and allows each user to take on a certain maximal
deficit. The purpose of the virtual currency is to allow users
to do work at different points in time while maintaining fair-
ness. Users have a steady inflow of money from supplying
resources and outflow of money from consuming services,
which varies over time. In steady state, when users have
been online long enough, their income must equal their ex-
penditure. Users cannot earn money when they are offline
but must still pay for their backed up files. Thus, their bal-
ance continuously decreases during that time. As long as we

do not use real money, the maximum deficit that users can
take on must be bounded. Ultimately, it is a policy decision
what happens when a user hits a pre-defined deficit level.
Our system will first notify the user (via email and visually
in the application) and present options to remedy the situ-
ation (e.g., increase supply). Failing this after a reasonable
timeout period (e.g., 4 weeks), the user’s backups will be
deleted. The server is involved in every operation, coordi-
nating the work done by the suppliers and allocating work
to those users with the lowest account balances to drive all
accounts (back) to zero over time. This is possible because
the users’ steady-state income must equal their expenditure.
Thus, when users have been online for a sufficient time pe-
riod, their account balance is always close to zero.

3. THE USER INTERFACE
In this section we only describe the UI to the degree nec-

essary to understand the economic model; see [13] for more
details. Figure 1 displays our current implementation of the
UI, a “settings window” where users can control their re-
sources. This window has two distinct areas: On the right
side, the users can set maximum bounds on the supply they
are willing to give up, using the three sliders for space, up-
load and download bandwidth. Below the sliders the current
average online time of the users is displayed. To change this
value the users have to leave their computer online for more
or fewer hours per day than they are currently doing. On
the left side of the window, the users can choose how much
online backup space they need. On the bar chart the users
can see how much they have already backed up (their cur-
rent demand) and how much total online backup space they
have (the bound on their demand) given the current supply.

To change anything about their settings, the users can
either drag the bar chart on the left side up or down, move
any of the sliders on the right side, or change how often
they are online. Both sides of the window are connected
to each other such that a change on either side affects and
dynamically updates the values on the other side as well.
The semantics of this connection are important: on average,
users must be able to pay for the total consumption chosen
on the left side with the supply chosen on the right side.

The users have multiple ways of seeing/experiencing cur-
rent market prices of the resources. They can either move
the sliders while observing the bar chart on the left. If the
bar chart moves a lot, then the price for that resource is rel-
atively high. If the bar chart only moves a little, the price is
currently relatively low. Alternatively, users can look at the
help text to the right of the three sliders, where we show the
users how much more of each resource they have to give up
to get 1 more GB of online backup space. This information
is also an indirect encoding of the current resource prices.

Bundle Constraints. We now turn our attention to the
combinatorial aspect of the market, the bundle constraints.
If a user keeps increasing one slider towards the maximum
while the other two sliders are relatively low, at some point
the online backup space on the left might stop increasing.
For example, if users limit their upload bandwidth to 5
KB/s, then increasing their space supply from 50 GB to
100 GB should not increase their online backup space. We
would simply never store 100 GB on these users’ hard disks
because 5 KB/s would not be enough to have a reasonable
retrieval rate for all of these file pieces. Thus, for the sys-



Figure 1: Screenshot of the implemented user interface. On the left side, the users see their current demand
and the upper bound on how much they can maximally consume given their supply choice. On the right side,
the users can specify bounds on the maximum supply they are willing to give up.

tem to use the whole supply of 100 GB, the users would first
have to increase their supply of bandwidth. An analogous
argument holds true for other combinations of resources. In
the UI, as long as the user moves the sliders within the blue
region (where the resources are “useful to give up”), the on-
line backup space changes more or less linearly. Once the
user moves the slider out of the blue region into the gray
region, the online backup space stops increasing because the
user is now supplying more of that resource than is useful.

In our implementation, we use system-wide information
regarding the demand for each of the three resources to de-
termine the regions where a user’s supply is useful. Obvi-
ously, if a user supplies resources in the same ratio as they
are being used in the system, then all of the resources are
useful. However, we give each user a certain “slack”, i.e., we
allow the users to specify supply ratios that deviate from the
system-wide ratio by a factor γ > 1 into either direction.
Note that the slack factor determines the users’ flexibility
regarding their resource supply. This flexibility comes from
the fact that the server can navigate certain kinds of work
to certain users. For example, repair traffic consumes a lot
of bandwidth but no space; cold backups require a lot of
space but only little bandwidth; hot backups require a lot
of bandwidth but little space. The server chooses the slack
factor depending on how much freedom the system has in
allocating different kinds of work to different kinds of users.

4. THE ECONOMIC MODEL
In this section we introduce a formal economic model to al-

low for a theoretical analysis of the properties of the real P2P
market system. In the P2P economy, there are I users who
are simultaneously suppliers and consumers. The set of com-
modities traded on the market is L = {S, U, D, A, B, Σ, R}.
The first four commodities are space (S), upload bandwidth
(U), download bandwidth (D), and availability (A), which
are the resources that users supply. The last three commodi-
ties are backup service (B), storage service (Σ), and retrieval
service (R), which are the services that users consume. By
slightly abusing notation, we sometimes use S, U, D, etc. as

subscripts and sometimes they denote the resource space,
e.g., for a particular amount of upload bandwidth u we re-
quire that u ∈ U . Each user i has a fixed endowment of
the supply resources denoted wi = (wiS , wiU , wiD, wiA) ∈
S × U ×D × [0, 1]. We analyze the equilibrium in a single
snapshot of the market when all users adjust their bounds
on supply to reach their desired demand vectors.

The next aspect of the model is driven by our UI. Via the
sliders, the user selects upper bounds for the supply vector,
which we denote Xi = (XiS , XiU , XiD, XiA). In return for
the supply Xi, the user interface shows the user the maxi-
mum demand of services, denoted Yi = (YiB , YiΣ, YiR). In
Figure 1 you can see that this user has currently chosen
XiS = 80.8GB, XiU = 400KB/s, XiU = 300KB/s and
XiA = 0.5 as the maximum supply vector.

At any point in time, a certain set of resources from the
user are being used, always less than Xi, and a certain set
of services is being demanded. We denote user i’s current
supply as xi = (xiS , xiU , xiD, xiA), and analogously user i’s
current demand for services as yi = (yiB , yiΣ, yiR). The user
does not choose xi and yi directly via the UI. Instead, the
server chooses xi (obeying the bound Xi) such that user
i can afford the current demand yi which the user sim-
ply chooses by backing up files or retrieving them. Note
that the UI displays the user’s consumption vector in an
aggregated way; i.e., instead of listing the services backup,
storage, and retrieval separately, we simply display the cur-
rently used online backup space (= 17.28GB in Figure 1)
and the maximum online backup space that user could con-
sume (= 33.5GB in Figure 1).

In practice, users have a certain cost for opening the set-
tings window and adjusting the settings. Instead of model-
ing this cost factor directly, we assume that when users open
their settings window, they are planning ahead for the whole
time period until they plan to open the settings window the
next time. While a user might currently consume yi, he
plans for consuming up to Yi the next time he opens the set-
tings window. He then selects the supply vector Xi that he
is willing to give up to get this Yi. The user cares about how



large the bounds on his supply are, because he has negative
utility for giving up his resources. To make this more formal,
we let Ki = wi −Xi with Ki ∈ S × U ×D × A, denote the
vector of resources that the user keeps, i.e., his endowment
minus the supply he gives up. We can specify the user’s pref-
erence relation over all the resources he keeps, and the ser-
vices he consumes: ºi (KiS , KiU , KiD, KiA, YiB , YiΣ, YiR).
We make the following assumption (cf. [11], chapters 1-3):

Assumption 1. Each user’s preferences are (i) complete,
(ii) transitive, (iii) continuous, (iv) strictly convex, and (v)
monotone.

Note that strict convexity requires strictly diminishing
marginal rates of substitution between two goods, i.e., we
need to compensate a user more and more with one good as
we take away 1 unit of another good. This is a reasonable
assumption because it represents a general preference for di-
versification. Monotonicity means that all commodities are
“goods”, i.e., if we give users more of any of the commodi-
ties, they are at least as well off as before. Given complete,
transitive, and continuous preferences, there exists a utility
function ui(Ki, Yi) = ui(KiS , KiU , KiD, KiA, YiB , YiΣ, YiR)
that represents the preference relation and this utility func-
tion is continuous (cf. [11], p.47).

4.1 Prices and Flow Constraints
The system can avoid non-linear prices and support an

equilibrium with linear prices as long as the user specifies
a supply vector within the slack region that the system al-
lows for each user’s supply. The only resource that is not
subject to these slack regions, or limits, is availability : as
long as the user’s availability is larger than zero, the other
resources can be used. To simplify the pricing model, we
introduce three new composite resources S, U, and D, incor-
porating the user’s availability into the other resources in
the following way:

• XiU ∈ U = XiU ·XiA · 24 · 60 · 60.

• XiD ∈ D = XiD ·XiA · 24 · 60 · 60.

• XiS ∈ S = ϕ(XiS , XiA) ≈ XiS ·XiA · overhead factor

Note that this notation denotes composite and not vector
quantities. The definitions for the composite resources up-
load and download bandwidth are straightforward: we mul-
tiply the bound on bandwidth the user supplies (e.g., 300
KB/S) with the user availability ∈ [0, 1] and then multiply
it with 24 hours, 60 minutes and 60 seconds, to calculate
how many KBs we can actually send to this user per day.
The definition of XiS is a little more intricate because the
user’s availability does not enter linearly into the calcula-
tion. However, it enters monotonically, i.e., more availabil-
ity is always better. Here, it suffices to know that the server
can compute this function ϕ and convert a user’s space and
availability supply into the new composite resource; further
details are beyond this paper.

We can now define user i’s supply vector for the three
composite resources: Xi = (XiS , XiU , XiD). The advantage
of using these composite resources is that now, the supply
from different users with different availabilities is compara-
ble. For example, 1 unit of S from agent i with availabil-
ity 0.5 is now equivalent to 1 unit of S from agent j with
availability 0.9. Obviously, internally agent i has to give

much more space to make up for his lower availability, but
in terms of bookkeeping, we can now operate directly with
composites. We define the aggregate supply vector for the
composite resources as X =

∑
i Xi, and analogously for Y ,

x and y. We make the following well-known observation (cf.
[11], chapter 3) that will be useful later:

Observation 1. The supply and demand functions Xi and
Yi are homogeneous of degree zero. This implies that the
aggregate supply and demand functions, i.e., X and Y , are
also homogeneous of degree zero.

Now we get to the pricing aspect of the system. We use
p = (pS , pU , pD) for the prices for supplied composite re-
sources, and q = (qB , qΣ, qR) for the demanded services. We
require that in steady state, users can pay for their consump-
tion with their supply. We can express this flow constraint
formally:

Xi · p = Yi · q. (1)

At the same time, the server allocates enough work to user
i such that the user’s current supply xi is enough to pay for
the demand yi, which leads to a second flow constraint:

xi · p = yi · q. (2)

4.2 Production Functions
We have already mentioned the important role of the

server in our market, i.e., that of combining resources from
different suppliers into a valuable bundle. Formally, the
server is the only producer in our market.3 For each service,
we have a production function that defines how many input
resources are needed to produce one unit of that service:

• Backup: fB : S × U ×D → B

• Storage: fΣ : S × U ×D → Σ

• Retrieval: fR : S × U ×D → R

Note that these production functions are defined via the
implementation of our system, i.e., the particular produc-
tion technology that we implemented. For example, they
are defined via the particular erasure coding algorithm that
is being used, by the frequency of repair operations, etc.
Thus, we can now specify a series of properties that these
production functions guarantee due to our implementation:

System Property 1. Production functions are fixed and the
same for all users.

System Property 2. The production functions all exhibit
constant returns to scale (they are homogeneous of degree 1),
i.e., ∀l ∈ {B, Σ, R} : fl(k · a, k · b, k · c) = k · fl(a, b, c)∀k ∈ <.

System Property 3. Each production function is bijective,
and thus we can take the inverses:

• f−1
B : B → S × U ×D

• f−1
Σ : Σ → S × U ×D

• f−1
R : R → S × U ×D

Given the inverse functions for the individual services backup,
storage, and retrieval, we can define an inverse function for
a three-dimensional service vector (b, σ, r) ∈ B × Σ×R:

f−1(b, σ, r) = f−1
B (b) + f−1

Σ (σ) + f−1
R (r) (3)

3Note that this is what allows us to define an exchange econ-
omy despite the fact that production is happening in the
market. For more details see [11], pp. 583-584.



Property 1 holds because of the way we have defined
the composite resources, with any differences between the
agents’ availabilities already considered. Property 2 (CRTS)
holds approximately for file sizes above a certain threshold
(approx. 1MB) due to the properties of the erasure cod-
ing algorithm.4 Property 3, the bijectivity of production,
holds, because for each service unit, there is only one way
to produce it. For example, to backup one file fragment, the
erasure coding algorithm tells us exactly how many supplier
fragments we need, and the server tells us how much repair
and testing traffic we can expect on average per fragment.

The following system’s property comes from the UI de-
sign and is motivated by keeping the money flow in the sys-
tem constant. This property is only possible because the
server is the only producer in our system and production
functions are fixed (Property 1), exhibit constant returns to
scale (Property 2), and are bijective (Property 3):

System Property 4. We charge the consumers exactly the
amount we pay the suppliers, i.e., for demand vector yi, we
charge user i exactly:

yi · q = f−1(y) · p.

Using Property 4, we can now re-write the flow constraints
for agent i as:

Xi · p = f−1(Yi) · p and xi · p = f−1(yi) · p
Thus, from now on, we can omit the price vector q for

demanded services and only need to consider price vector p.5

Effectively, we can treat the whole market as an exchange
economy for the composite resources S, U, and D, assuming
users only engage in exchange of supplied resources because
everyone has access to the same production technology (cf.
[11], pp. 582-584).

Remember that the UI automatically calculates and ad-
justs the maximum demand vector Yi for user i based on the
user’s supply bound Xi. In practice, the maximum income
is divided by the current average income of the user, and the
resulting factor is multiplied with the user’s current demand,
giving us the maximum demand the user can afford:

System Property 5. The system uses a linear demand pre-
diction model for the calculation of a user’s maximum de-
mand Yi:

Yi =
Xi · p
xi · p · yi = λi · yi

To facilitate the equilibrium analysis in the next section,
we make the following simplifying assumption:

Assumption 2. We assume that with a large number of
users, a linear demand prediction is also correct for the ag-
gregate demand vectors, i.e.:

∃λ : Y = λ · y
4Very small files are an exception and need special treatment
in the implementation, because they are more expensive to
be produced (again due to the erasure coding). We take care
of this in the implementation by charging users more when
they are backing up small files (essentially we have two sets
of prices, one for normal files and one for small files).
5Going forward, please remember that multiplications with
p are always dot products, and thus p showing up on the left
and the right side of an equation does not cancel out.

This assumption is justified because in practice, the sys-
tem will have thousands or millions of users. Let n denote
the number of users in the economy, let Y n =

∑n
i=1 Yi,

yn =
∑n

i=1 yi, and let µ(λi) denote the mean of the distri-
bution of the λi’s. Given that the λi’s are independent from
the yi’s, it follows from the strong law of large numbers, that
if the number of users n is large enough, then Y n is linearly
predictable by µ(λi) · yn along each dimension to any addi-
tive error. More specifically, for any ε and δ ≥ 0, for large
enough n:

Pr[||Y n − µ(λi) · yn|| ≤ ε] ≥ 1− δ.

5. EQUILIBRIUM ANALYSIS
A real-world instance of the P2P backup application would

have thousands if not millions of users. Thus, the underlying
market would be large enough so that no individual agent
had a significant effect on market prices. Consequently, users
can be modeled as price-taking agents and a general equi-
librium model is suitable to analyze this market.

5.1 The Buffer Equilibrium
A standard equilibrium concept in general equilibrium

theory is the Walrasian equilibrium which requires that de-
mand equals supply such that the market clears. Certainly
we want to have enough supply to satisfy current demand,
i.e., we want that:

x = f−1(y).

But remember that users are not constantly adjusting xi.
Instead, they choose maximum bounds on their supply Xi

via the UI. But given that the maximum supply Xi is gen-
erally larger than xi, it is not a very strong requirement
to have x = f−1(y). In particular, we do not only want
to balance the market now, but we want to guarantee that
the backup system can also satisfy demand Y in the future,
which implies that we must always have some excess supply
of all resources. Ideally, we want to maximize the buffer
between the current usage of resources, i.e., f−1(y) and the
maximum supply of resources, i.e., X. We will use this “size
of the buffer” repeatedly and thus define it more formally:

Definition 1. (Size of the Supply-Side Buffer) The size of
the supply-side buffer is the smallest ratio, over all resources,
of maximum supply to current demand:

λ = min
l∈{S,U,D}

Xl

f−1
l (y)

(4)

The reason for having a supply side buffer is that we want
to be safe, i.e., we want to be sure that we can satisfy new
incoming requests. More specifically, we want to make sure
that as demand increases from its current state y to the
maximum state we allow the users Y , we will always have
enough supply to satisfy this demand. More formally:

Definition 2. (Safety Property) The safety property of
the system is that we always have enough supply to satisfy
increasing demand, i.e.:

∀y ≤ Y : X ≥ f−1(y) (5)

Using the bijectivity and the CRTS properties of the pro-
duction functions, it is easy to show the following lemma:



Lemma 1. If X = f−1(Y ), then the safety property is
satisfied.

In words, when the bound on aggregate supply of all re-
sources equals the amount of resources needed to produce
the projected service vector Y , then we can guarantee the
safety property. When we have reached this state of the
system, we say we have reached the buffer equilibrium:

Definition 3. (Buffer Equilibrium) A Buffer equilibrium is
a price vector p = (pS , pU , pD), an aggregate supply vector

X(p), and an aggregate demand vector Y (p), such that:

X(p) = f−1(Y (p))

i.e., it is a Walrasian equilibrium defined on the supply and
demand bounds chosen by the users.

We call this equilibrium the “buffer equilibrium” because
the extent to which X is above f−1(y), i.e., the size of the
buffer, determines the “level of safety” in the system.

5.2 Equilibrium Existence
In this section, we will prove that a buffer equilibrium ex-

ists under some reasonable assumptions. To do so, we first
introduce some new notation and prove two Lemmas before
we get to the actual theorem. We let L = {S, U, D} and
we use l to index a particular composite resources. We de-
fine the vector-valued function Z(p) to measure the relative
buffer for each individual resource in the following way:

Zl(p) =
(∑

l
Xl(p)

f−1
l

(y(p))

|L|
)
− Xl(p)

f−1
l (y(p))

(6)

In words, the first term represents the average supply to de-
mand ratio, in our case averaged over the three goods storage
space, upload and download bandwidth. The second term
represents the supply to demand ratio of the particular good
l. Thus, Zl(p) represents how far the “buffer” between sup-
ply and demand for good l is away from the average buffer.
If Zl is negative, then the buffer between supply and demand
for good l is relatively high and should be decreased; if Zl

is positive, then the buffer between supply and demand for
good l is relative low and should be increased. If the buffer
is the same for all goods, we have reached the equilibrium.
Thus, we can prove the following Lemma:

Lemma 2. If Z(p) = 0, then the market has reached a
buffer equilibrium and p is the equilibrium price vector.

Proof. If Z(p) = 0 then:

∀l :
(∑

l
Xl(p)

f−1
l

(y(p))

|L|
)

=
Xl(p)

f−1
l (y(p))

⇒ ∃λ > 1 s.t. ∀l : Xl(p) = λ · f−1
l (y(p))

Now, due to Assumption 2 we know that ∃δ : Y = δ · y.
Thus:

⇒ ∀l : Xl(p) = λ · f−1
l (

1

δ
Y (p)) (7)

⇒ ∀l : Xl(p) = λ · 1

δ
· f−1

l (Y (p)) (8)

⇒ ∀l : Xl(p) = λ∗ · f−1
l (Y (p)) for λ∗ = λ · 1

δ
(9)

⇒ X(p) = λ∗ · f−1(Y (p)) (10)

But from the flow constraints (Eqn. 4) we also know that:

X(p) · p = f−1(Y (p)) · p (11)

Equations (10) and (11) can only both be true if λ∗ = 1.
Thus, it follows that:

X(p) = f−1(Y (p))

which is the definition of the buffer equilibrium.

Next we show that Z(·) has a series of nice properties:

Lemma 3. Given that users’ preferences are strongly mono-
tone with respect to supply resources, the function Z(·) has
the following properties:

(i) Z(·) is continuous.

(ii) Z(·) is homogeneous of degree zero.

(iii) ∀p :
∑

l Zl(p) = 0.

(iv) If pn → p, where p 6= 0, pl > 0 and pk = 0 for some
k 6= l, then for n sufficiently large:

Zk(pn) = max{ZS(pn), ZU (pn), ZD(pn)}.
Proof. Property (i), the continuity of Z(·) follows di-

rectly from the continuity of the user preferences (which is
why X(p) and y(p) are continuous) and the continuity of
the inverse production functions. Property (ii), the homo-
geneity of degree zero follows because X(p) and y(p) are
homogeneous of degree zero. Property (iii), follows directly
from the definition of Z(·):

∑

l

Zl(p) = 3 ·
(∑

l
Xl(p)

f−1
l

(y(p))

|L|
)
−

∑

l∈{S,U,D}

X(p)

f−1
l (y(p))

= 0

Finally, property (iv): as the price of resource k ∈ {S, U, D}
goes towards zero, due to users’ strongly monotone prefer-
ences for supply resources, they will supply less and less of
that resource, and supply more of the other resources in-
stead, at least of resource l whose price is bounded away
from zero. However, because of the bundle constraints, the
users cannot reduce their supply of resource k towards zero.
Let γ > 1 denote the slack factor we allow users when setting
their preferences. The relevant constraints, lower-bounding
the supply for resource k, are:

∀l ∈ L \ {k} : Xik ≥ 1

λ
· f−1

k (Y )

f−1
l (Y )

·Xil

As pn → p with pk = 0, for n large enough, pn will be
sufficiently close to zero, such that each user i chooses to
supply the minimal amount of resource k that is possible.
Thus, at least with respect to one of the other resources, the
slack constraint will be binding, i.e.,:

Xik = max
{ 1

λ
· f−1

k (Y )

f−1
l (Y )

·Xil,
1

λ
· f−1

k (Y )

f−1
m (Y )

·Xim

}

This does not say that the constraint will be binding for
the same resource l or m for every user. However, for every
user, one of the constraints will be biding and thus, every
user will contribute least to the supply side buffer for re-
source k. Consequently, the total supply side buffer for good
k will be minimal (i.e., Zk(pn) will be maximal), which im-
plies that Zk(pn) = max{ZS(pn), ZU (pn), ZD(pn)}.



Theorem 1. A buffer equilibrium exists in the P2P ex-
change economy, given that users’ preferences are continu-
ous and strictly convex, monotone w.r.t. service products as
well as strongly monotone w.r.t. to supply resources.

Proof. We have shown in Lemma 2 that once we have
found a price vector p such that Z(p) = 0, we have reached a
buffer equilibrium. Furthermore, in Lemma 3 we have shown
four properties of Z(·). Equipped with these two results,
the remainder of our proof follows using techniques from
the standard equilibrium existence proof for the Walrasian
Equilibrium (see [11] page 586). We omit the details here
due to space constraints, but we want to briefly point out
where changes in the proof are necessary. First, note that
we are not working with the excess demand function of this
economy and instead use the function Z(·) that measures
the relative buffer size for each resource. Thus, in step 1 of
the proof in [11], we cannot use Walras’ law and instead use
property (iii) of Lemma 3. Second, in step 4 of the proof in
[11], when proving upper hemicontinuity of the fixed-point
correspondence, we cannot use the result that the excess
demand for one resources goes to infinity when its price goes
towards zero. Instead, we use property (iv) of Lemma 3.

One might wonder what prevented the direct applicability
of standard theorems regarding equilibrium existence (e.g.,
[11] page 585). It turns out that the standard results were
not directly applicable for three reasons. Most importantly,
we do not assume that users have strongly monotone pref-
erences w.r.t. service products. The consequence of this is
that as the price of one resources goes towards zero, it is not
necessarily the case that the demand for service products
produced from that resource go towards infinity. Second,
we do not have a pure exchange economy and have to take
the production functions into account. Those exhibit con-
stant returns to scale which implies that production sets are
neither strictly convex nor bounded above, which compli-
cates the analysis significantly (cf. [11] page 583). Third,
each user’s supply is subject to the bundle constraints, i.e.,
a user’s supply cannot drop below or go above certain lim-
its. Due to these three factors, we needed slightly different
machinery to prove equilibrium existence in our economy.

5.3 Equilibrium Uniqueness
Without any further restrictions on the user’s preferences,

we cannot say anything about the uniqueness of the buffer
equilibrium (cf. Sonnenschein-Mantel-Debreu Theorem, [11],
pp. 598-606), because the substitution effect and the wealth
effect could either go in the same direction or in opposite di-
rections.The gross substitutes assumption resolves this prob-
lem, by assuming that in gross terms, taking substitution
and wealth effect into account, the resources are substitutes.
We assume that this is the case for the supply resources:

Assumption 3. (Supply Resources are Gross Substitutes)
We assume that the aggregate supply function X(p) satisfies
the gross substitutes condition [1], i.e., whenever p′ and p
are such that, for some k, p′k > pk and p′l = pl for l 6= k, we
have Xl(p

′) < Xl(p) for l 6= k.

The standard equilibrium uniqueness proof for Walrasian
equilibria relies on the assumption that the aggregate excess
demand function satisfies the gross substitutes condition for
all commodities. However, we only want to make that as-
sumption w.r.t. supply resources where this seems very rea-
sonable because as the price for one resource decreases, this

means that the relative price for another resource increases,
and thus users would be happy to supply more of the more
costly resources now. However, for the demanded services,
the gross substitutes assumption is most certainly violated.
For example, if the price for storage would increase, it is
not reasonable to assume that now users would store fewer
files online, but instead consume more backup and retrieval
operations. Thus, we cannot make the gross substitutes as-
sumption for all commodities. Instead, we will make the
following assumption w.r.t consumed services:

Assumption 4. (Services are Perfect Complements)
We assume that the aggregate demand function Y (p) sat-

isfies the perfect complements condition.

A consequence of the perfect complements condition is
that price changes affect all dimensions of the aggregate de-
mand vector equally. For an individual user, the Leontief
utility function would induce the perfect complements prop-
erty. However, note that we do not require individual users
to have demand functions that satisfy the perfect comple-
ments condition. It is a much weaker assumption, and much
more reasonable due to the law of large numbers, to assume
that the aggregate demand function satisfies it.

Theorem 2. The buffer equilibrium is unique (up to nor-
malization), given that the aggregate supply function satisfies
the gross substitutes property (Assumption 3), and that the
aggregate demand function satisfies the perfect complements
property (Assumption 4).

Proof. The fact that we have different assumptions on
the supply and demand side of our economy complicates
the uniqueness proof. When prices go up for good l, it is
not a priori clear what happens to the buffer equilibrium.
To get a better handle on this, we first separate the supply
and demand aspects by introducing yet another alternative
description of the buffer equilibrium:

X = f−1(Y ) (12)

⇔
(
XS , XU , XD

)
=

(
f−1

S
(Y ), f−1

U
(Y ), f−1

D
(Y )

)
(13)

⇔
(
1,

XU

XS

,
XD

XS

)
=

(
1,

f−1

U
(Y )

f−1

S
(Y )

,
f−1

D
(Y )

f−1

S
(Y )

)
(14)

⇔
(XU

XS

,
XD

XS

)
−

(f−1

U
(Y )

f−1

S
(Y )

,
f−1

D
(Y )

f−1

S
(Y )

)
= 0 (15)

We define a new vector-valued function g(p) =
(
gU (p), gD(p)

)
:

gU (p) =
(XU

XS

−
f−1

U
(Y )

f−1

S
(Y )

)
and gD(p) =

(XD

XS

−
f−1

D
(Y )

f−1

S
(Y )

)
,

which naturally leads to a new equilibrium definition:

Definition 4. (Buffer Equilibrium [1. Alternative]) A buffer
equilibrium is a price vector p and g(p) such that

g(p) =

(
0
0

)
.

Thus, we have simplified the problem of finding equilib-
rium prices to finding the root of the function g(p). Show-
ing uniqueness of the buffer equilibrium is now equivalent to



showing that g(p) = 0 has at most one (normalized) solu-
tion. Now, let’s assume that g(p) = 0, i.e., p is an equilib-
rium price vector. We show that for any p′, g(p′) 6= 0 unless
p and p′ are collinear, i.e., unless p′ = λp for some λ > 0.
Note that because X(p) and Y (p) are homogeneous of de-
gree zero, g(·) is also homogeneous of degree zero. Thus,
we can assume that p′ ≥ p and pl = p′l for some l. We
now alter the price vector p′ to obtain p in two steps, low-
ering (or keeping unaltered) the price of resources k 6= l
one at a time. Because of Assumption 4 (the aggregate de-
mand function satisfies the perfect complements condition),
a price change affects all dimensions of the demand function
equally, i.e., ∃µ ∈ R : Y (p) = µ · Y (p′). Because the pro-
duction function is bijective and exhibits constant returns to
scale, this implies that f−1(Y (p)) = µ · f−1(Y (p′)). Thus,
f−1

U
(Y (p))

f−1
S

(Y (p))
=

f−1
U

(Y (p′))

f−1
S

(Y (p′))
, i.e., changes in the demand function

Y (·) due to price changes do not affect g(·). Thus, we only
have to pay attention to changes in the supply function X.
Here, we need to differentiate the following 3 cases:.

Case 1: l =storage. By gross substitution (see Assump-
tion 3), the supply of good S cannot decrease in any step,
and, because p 6= p′, it will actually increase in at least one
step. In turn, the supply of U and D will stay the same
or decrease because of homogeneity of degree zero. Thus,
the first term in the g(·) functions will decrease, while the
second term stays constants, and thus, g(p) < g(p′).

Case 2: l =upload bandwidth. By gross substitution,
the supply of good U cannot decrease in any step, and, be-
cause p 6= p′, it will actually increase in at least one step.
The supply of S and D on the other hand will stay the
same or decrease. Thus, the first term in gU (·) will increase,
while the second term stays constants. Thus, gU (p) > gU (p′)
(note, we do not even need to consider gD(p) in this case).

Case 3: l =download bandwidth. By gross substitution,
the supply of good D cannot decrease in any step, and, be-
cause p 6= p′, it will actually increase in at least one step.
The supply of S and U on the other hand will stay the same
or decrease. Thus, the first term in gD(·) will increase, while
the second term stays constants. Thus, gD(p) > gD(p′)
(again, we do not even need to consider gU (p) is this case).

In summary, in all three cases we established that g(p) 6=
g(p′) which concludes the equilibrium uniqueness proof.

5.4 Limited Controllability of the Buffer Size
So far we have shown under what conditions the buffer

equilibrium exists and when it is unique. We know from
Lemma 1 that when the system is in the buffer equilibrium,
then the safety property is guaranteed, i.e., we always have
enough supply to satisfy demand as it increases from y to-
wards Y . But what happens if the system is out of equi-
librium? Note that in practice, users do not permanently
adjust their settings, and thus price changes will only af-
fect supply and demand with a significant delay. Conse-
quently, it would be desirable to have a large enough buffer
between current demand and maximum supply, such that
even if the system is out of equilibrium, we can satisfy new
incoming demand. For example, it seems like desirable goal
to have at least twice as much supply as current demand,
i.e., X ≥ 2 · f−1(y). Unfortunately, the uniqueness of the
buffer equilibrium has an immediate consequence regarding
the limited controllability of the buffer equilibrium:

Corollary 1. (Limited Controllability of the Market)
Given Property 4, and Assumptions 3 and 4, the market

operator cannot influence the size of the buffer in the buffer
equilibrium.

Given this limited controllability, it is natural to ask what
buffer size to expect in equilibrium. It turns out that, in
equilibrium, the supply side buffer is uniquely determined
via the individual demand side buffers of all users.

Proposition 1. In the buffer equilibrium, given Assump-
tion 2, the size of the supply buffer equals the size of the
demand buffer.

Proof.

X = f−1(Y ) (16)

⇔ X = f−1(λ · y) (17)

⇔ X = λ · f−1(y) (18)

In words, the size of the buffer depends on how forward-
looking the agents are. If on average the users give them-
selves a 25% buffer on the demand side (e.g., a user has
currently backed up 20GB and sets the sliders in such a po-
sition that his/her maximum online backup space is 25GB),
then we would also have a 25% buffer on the supply side,
i.e., X = 1.25 · f−1(y).

Now we turn to the question why the market operator can-
not influence the size of the supply side buffer, i.e., which
system properties or which assumptions we made in our mar-
ket economy are the limiting ones. Remember that the lim-
ited controllability of the buffer equilibrium was a corollary
of the uniqueness property, which relied on two assumption,
namely gross substitutability of supplied resources, and that
services are perfect complements. It turns out, however,
that the limited controllability remains even without those
assumptions, strengthening the result from Corollary 1:

Proposition 2. Given system property 4, if each indi-
vidual user i has a limited planning horizon in that he chooses
not to give himself more than a demand side buffer of λi,
then there exists a Λ such that the market operator cannot
achieve a buffer equilibrium with buffer size Λ.

Proof. For the proof we construct a simple counterex-
ample. We allow price changes to affect x, X, y and Y and in
particular we do not make the gross substitutability assump-
tion or the perfect complements assumption. We choose a
Λ such that ∀i : Λ > λi. And we let λ∗i = maxi λi. Now:

∀i : Yi = λi · yi (19)

⇒ Y =
∑

i

λi · yi (20)

⇒ Y ≤
∑

i

λ∗i · yi (21)

⇒ Y ≤ λ∗i
∑

i

·yi (22)

⇒ Y ≤ λ∗i y (23)

⇒ f−1(y) ≤ λ∗i f−1(y) (24)

⇒ X ≤ λ∗i f−1(y) (25)

Thus, the buffer between supply and demand would be less
or equal to λ∗i which by assumption was strictly less than
the buffer Λ that the market operator desired.



5.5 Decoupling Supply and Demand Prices
We have seen in the previous section that the limited con-

trollability of the buffer equilibrium does not hinge on the
gross substitutes or perfect complements assumptions. In
this section we show that the crux of the matter is System
Property 4, i.e., the coupling of supply and demand prices:

Xi · p = Yi · q (26)

⇔ Xi · p = f−1(Yi) · p (27)

So far, we have charged each consumer exactly as much as
we pay the suppliers for the corresponding resources. If we
decouple supply and demand prices we gain additional free-
dom in pricing commodities. In particular, if we wanted to
increase the supply side buffer, then we could make some
services more expensive, i.e., we could increase the price on
the services beyond the true costs for the resources neces-
sary to produce them. To avoid extracting money out of
the system over time, in an actual transaction, we would
still charge the consumers according to the true costs of the
resources. The inflated prices would only be used in the UI
to induce users to increase their supply so that the market
operator could achieve the desired size of the supply buffer.

Proposition 3. If we decouple supply and service prices,
then the market operator can adjust prices such as to achieve
any desired buffer size Λ > 1.

Proof. We still let p denote the price used to calculate
the payments for the suppliers. But consumers now have to
pay price p′ = Λ · p for the resources that are necessary to
produce their services. Thus, the new flow constraint is:

X · p = f−1(Y ) · Λ · p (28)

Note that showing consumers a price of Λ ·p instead of p has
the same effect as if the amount of resources necessary to
produce the corresponding services had increased by factor
Λ. Now, assume the market operator updates price vector
p, as before, until Z(p) = 0. In the proof for Lemma 2 we
have shown that this implies X(p) = λ∗ · f−1(Y (p)). If we
plug this into the new flow constraint, we get:

λ∗ · f−1(Y (p)) · p = f−1(Y ) · Λ · p
⇒ λ∗ = Λ

⇒ X(p)

f−1(Y (p))
= Λ

⇒ X(p)

f−1(y(p))
≥ Λ

which shows that supply side buffer Λ can be achieved.

At first sight this result might seem like the perfect solu-
tion regarding the previously limited controllability of the
buffer equilibrium. But unfortunately, it is not. There is a
good reason for charging the consumers as much as we pay
the suppliers, namely such that in the UI we can display to
the users the true costs of the services they are consuming.
Effectively, the UI shows the users some kind of contract : “if
you want to consume these services, then you need to supply
this many resources to pay for them.” Note that if we would
artificially inflate prices, we would display an incorrect con-
tract, and in some sense “lie” to our users. Some users might
actually figure this out over time an then try to exploit it.

Furthermore, this technique could actually decrease the effi-
ciency of the system. Some users might consume less services
than before because they cannot afford to give up as much
supply as the UI says they would need to. In the worst case,
users might decide to completely leave the system when the
perceived costs for using it seem to high. Thus, it remains
to be studied how new user interfaces can be designed that
give the market operator more control over the supply side
buffer, while avoiding the problems we mentioned.

6. THE PRICE UPDATE ALGORITHM
In this section we devise a price update algorithm that

is invoked regularly on the server (e.g., once a day), with
the goal to move prices towards the buffer equilibrium over
time. Our algorithm is oriented at the tâtonnement process
as defined by Walras [15]. However, Walras’ algorithm only
allowed trades at equilibrium prices. In our system, however,
we must allow trades at all times, even out of equilibrium.

6.1 The Algorithm
Because users’ preferences are homogeneous of degree zero,

collinear price vectors are equivalent. Thus, instead of search-
ing for the equilibrium price vector in R3, we can simplify
the task by looking at projective space RP2:

RP2 :=
(
(pS , pU , pD) ∈ R3 \ {0})/ ∼,

with (pS , pU , pD) ∼ λ(pS , pU , pD) ∀λ ∈ R+

Thus, we can fix the price of an arbitrary good (the nu-
meraire) and normalize the price vector accordingly. Here,
we normalize the price of storage space to 1:

p = (pS , pU , pD) ∼ (1,
pU

pS

,
pD

pS

)

In Section 5.3, we have reduced the problem of finding
the buffer equilibrium to finding the root of the function
g(p) =

(
gU (p), gD(p)

)
where

gU (p) =
(XU

XS

−
f−1

U
(Y )

f−1

S
(Y )

)
and gD(p) =

(XD

XS

−
f−1

D
(Y )

f−1

S
(Y )

)
.

This formulation of the buffer equilibrium is also useful
for the price update algorithm, because finding the root of a
function is a well-understood mathematical problem. New-
ton’s method is probably the best-known root-finding algo-
rithm, which also converges very quickly in practice. How-
ever, it requires the evaluation of the function’s derivative at
each step. Unfortunately, we don’t know the function g(·)
and thus cannot compute its derivative. Instead, we only
get to know individual points in each iteration and can use
these points to estimate the derivative. This is exactly what
the secant method does for a one-dimensional function.

The problem is that g(p) is 2-dimensional, and thus the
secant method is not directly applicable. The appropriate
multi-dimensional generalization is Broyden’s method [4], a
quasi-Newton method. Unfortunately, that method requires
knowledge of the Jacobian, which we don’t know and also
cannot even measure approximately. However, we show that
one can use an approximation to the diagonal sub-matrix
of the Jacobian instead of the full Jacobian matrix. The
diagonal sub-matrix of the Jacobian can be approximated
by studying changes in the function g(p). This leads to the
following quasi-Newton method for multiple dimensions:



Definition 5. (The Price Update Algorithm)

pt+1
l =

{
1 for l = S

pt
l − pt

l−pt−1
l

gl(p
t)−gl(p

t−1)
· gl(p

t) for l = U, D

For the implementation of the price update algorithm in
our system we took care of a few special cases (e.g., exactly
reaching the equilibrium such that terms cancel out). Due
to space constraints, we omit the details here.

6.2 Theoretical Convergence Analysis
In this section we prove convergence of the price update

algorithm under quite mild assumptions. We begin with the
analysis of the convergence of the following iteration rule:

x(k+1) = x(k) −D(x(k))−1F (x(k)) (29)

where F is a function F : Rn → Rn and D is the diagonal
sub-matrix of the Jacobian J of F . We define the matrix
L by the rule J(x) = D(x) + L(x), i.e., L comprises of the
off-diagonal partial derivatives in the Jacobian. For this
iteration rule, the following theorem holds (proof is omitted
due to space constraints):

Theorem 3. Let F be a continuously differentiable func-
tion. Suppose that in the iteration rule given by equation
(29), x(0) is chosen close enough to a root x∗ of F , J(x∗) is
non-singular, J and D are Lipschitz continuous, and L(x∗) =

0. Then the successive iterations x(k) produced by the iter-
ation rule converge to x∗, and the rate of convergence is at
least Q-linear.6

The problem one faces when trying to apply the secant
method to higher dimensions is that the system of equations
provided by Jk ·(x(k)−x(k−1)) ' F (x(k))−F (x(k−1)) (where
Jk is the current estimate of the Jacobian) is under deter-
mined. However, if one uses the diagonal approximation to
the Jacobian, then the system is fully determined. What
Theorem 3 says is that under certain conditions, using the
diagonal sub-matrix of the Jacobian instead of the full Ja-
cobian in the given iteration rule, still leads to convergence
to a root of the function.

Equipped with Theorem 3, it is now easy to prove that
the price update algorithm given in Definition 5 converges
to a buffer equilibrium. We only need to consider the update
algorithm for resource prices pU and pD because the price for
space remains constant at 1. Consider the function g(·), and
as before, J is the Jacobian of g(·), D is the diagonal sub-
matrix of J , and L is defined by the rule J(x) = D(x)+L(x).

Corollary 2. Consider the price update algorithm given
in Definition 5. If g(·) is a continuously differentiable func-

tion, p(0) is chosen close enough to a root p∗ of g(·), the
Jacobian J(p∗) is non-singular, J and D are Lipschitz con-
tinuous, and L(p∗) = 0, then the price update algorithm
converges to an equilibrium price vector p∗, and the rate of
convergence is at least Q-linear.

6We can in fact prove that the iteration rule exhibits faster
than Q-linear convergence: just like Broyden’s method, its
convergence is locally Q-superlinear. However, showing this
result requires a more intricate argument and we defer this
to a future extended version of this paper.

Proof. We have shown in Section 5.3 that if we find a
price vector p∗ such that g(p∗) = 0, then we have reached
a buffer equilibrium. Thus, we only have to show that the
price update algorithm converges to a root of the function
g(·). Now, note that the price update algorithm provided in
Definition 5 defines a quasi-Newton iteration rule that uses
the diagonal sub-matrix of the Jacobian of the function g(·),
equivalent to the iteration rule given in equation (29). By
Theorem 3, that iteration rule converges locally to a root of
g(·), and the rate of convergence is at least Q-linear.

One might wonder how restrictive the conditions of Theo-
rem 3 and Corollary 2 are. The condition that the matrices
J and D be Lipschitz continuous puts upper bounds on how
fast the partial derivatives of the function can change. It
turns out that one can relax this assumption to just that
of J and D being Lipschitz continuous in a neighborhood
of the root without affecting the conclusions of the theorem
and corollary. Local Lipschitz continuity near the neighbor-
hood of the root seems like a plausible condition for g(·)
to satisfy because it is hard to envision wild changes in the
function near an equilibrium point. The non-singularity of
J(p∗) means that our function does not have a higher order
zero at the equilibrium point. If this assumption fails, then
the Newton method is known to converge only linearly to
the root. It is likely that our algorithm would still converge,
but we do not have a proof of this. The local convergence of
our method is an aspect we share with all Newton’s methods
operating in multiple dimensions, and this is the most wor-
risome property as well as the hardest to get a handle on. If
‖J(p∗)−1‖ and Lipschitz constants of J and D around p∗ are
all small, then the basin of convergence is large. However, it
seems that only experimental evidence can validate whether
this assumption is reasonable in our situation.

6.3 Experimental Convergence Analysis
In this section we analyze the convergence of the price

update algorithm experimentally via simulations. To make
sure a unique buffer equilibrium exists, we must specify
utility functions that satisfy the properties of Theorems 1
and 2. It is well known that the CES (constant elastic-
ity of substitution) utility function with the following form

u(x1, x2) = (α1x
ρ
1 + α2x

ρ
2)

1
p satisfies the gross substitutes

condition for 0 < ρ < 1 (cf. [11], p 612). Furthermore, the
utility function u(x3, x4) = min(α3x

τ
3 , α4x

τ
4) implies that

x3 and x4 are perfect substitutes (while still maintaining
strictly convex preferences). Thus, a whole class of utility
functions satisfying the necessary assumptions is given by:

ui(Ki, Yi) =

(α1K
ρ

S
+ α2K

ρ

U
+ α3K

ρ

D
)

1
ρ + min(β1Y

τ
B , β2Y

τ
Σ , β3Y

τ
R )

Because this utility function is too complex to derive sup-
ply and demand functions analytically, we used the NLP-
solver MINOS which is able to solve the utility maximization
problem via reduced-gradient methods very efficiently.

Experimental Set-up. We implemented a market simula-
tion with 100 agents, each initialized with a different utility
function. For each agent we randomly picked an endowment
vector wi, a current demand vector yi, and the parameters
α1, α2, α3, β1, β2, β3, ρ and τ . After each time step, we used
MINOS to solve 100 utility maximization problems and fed
the new supply and demand vectors back into the simula-
tion to calculate the next price iteration. We stopped the
experiment once |gU + gD| ≤ 0.00001.



Experimental Results. Our findings from this experi-
ment confirm the results from the theoretical convergence
analysis. When the initial price vector was chosen close
enough to the equilibrium price vector, then the price up-
date algorithm converged very quickly. However, when a
price vector far away from the equilibrium prices was cho-
sen, the algorithm sometimes never converged, which was
expected. While these preliminary results are encouraging,
we are currently working on a much more detailed experi-
mental analysis of the price update algorithm. For exam-
ple, we will study how the algorithm reacts to demand and
supply shocks, what happens when the users update their
settings with different delays, what happens when a subset
of the users becomes price-insensitive (cf. [13], discussion
about price discoverability), or what happens if individual
users suddenly drop out of the market or join the market.

7. CONCLUSION
In this paper, we have presented the design and analysis of

a novel resource exchange market underlying a P2P backup
application. At all times, for the model formulation and
the theoretical analysis, the focus was on the actual imple-
mented system which we have successfully tested in alpha
version. During the design phase for this market, we fol-
lowed the hidden market design paradigm [14]. The result is
a system that hides many of the market complexities and al-
lows the users to interact with the market in a very indirect
way. In contrast to existing work in this area where users
are generally required to constantly update their supply and
demand, in our model users choose bounds on their maxi-
mum supply in return for being allowed to consume a certain
maximum amount of backup services in the future. In this
setting, we have proved the existence and uniqueness of a
buffer equilibrium under reasonable assumptions. We have
introduced a price update algorithm and have shown that
it converges Q-linearly, given that initial prices are chosen
close enough to the equilibrium. However, we are planning a
more extensive experimental analysis to fully understand the
behavior of the algorithm. The most surprising result is the
limited controllability of the size of the supply side buffer in
equilibrium. We have shown that supply and demand prices
would have to be decoupled to enable more control.

In future research, we will study how to design new UIs
that allow for this decoupling without presenting false infor-
mation to the users. In ongoing work we are augmenting the
market design with a payment mechanism that will provide
for robustness against strategic deviations from users that
manipulate the protocol by reprogramming their software
client. Furthermore, we are extending our current design to
allow for real monetary payments. On the one side, users
will then be able to pay for their consumption of services by
either providing their own resources or by paying with real
money, and on the other side, users will then also be able to
earn real money by supplying their resources.

We believe that the market design presented in this paper
has applicability beyond P2P backup systems. For example,
significant research efforts currently go into the development
of smart grids [6]. To effectively involve the individual con-
sumers of electricity in these new energy markets, the de-
velopment of new user interfaces and hidden market designs
will be necessary. Hopefully, the ideas we presented in this
paper will inspire other researchers to develop similar mar-
ket designs for novel applications in many other domains.
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