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Abstract

We present a new market design for a peer-to-peer (p2p) backup application and provide a
theoretical and experimental analysis. In domains such as p2p backup, where many non-expert
users find markets unnatural or unexpected, it is often a pragmatic requisite to remove or hide the
market’s complexities. To this end, we introduce a new design paradigm which we call “hidden
market design,” and show, how a market and its user interface (UI) can be designed to hide
the underlying complexities, while maintaining the market’s functionality. We enable the p2p
backup market using a virtual currency only, and we develop a novel market UI that makes the
interaction for the users as seamless as possible. The UI hides or simplifies many aspects of the
market, including combinatorial resource constraints, prices, account balances and payments. In
a real p2p backup system, we can expect users to update their settings with a delay upon price
changes. Therefore, the market is designed to work well even out of equilibrium, by maximizing
the buffer between demand and supply. The main theoretical result is an existence and uniqueness
theorem, which also holds if a certain percentage of the user population is price-insensitive or even
adversarial. However, we also show that the more freedom we give the users, the less robust the
system becomes against adversarial attacks. Furthermore, the buffer size has limited controllability
via price changes alone and we show how to address this. We introduce a price update algorithm
that uses daily aggregate supply and demand data to move prices towards the equilibrium, and
we prove that the algorithm converges quickly towards the equilibrium. Finally, we present results
from a formative usability study of the market UI, where we found encouraging results regarding
the hidden markets paradigm. The market design presented here is implemented as part of a
Microsoft research project and an alpha version of the software has been successfully tested.
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1. Introduction

Reliable, inexpensive, and easy-to-use backup solutions are becoming increasingly important. Indi-
vidual users and companies regularly lose valuable data because their hard drives crash, their laptops
are stolen, etc. Already in 2003, the annual costs of data loss for US businesses alone was estimated
to be $18.2 Billion [23]. With broadband connections becoming faster and cheaper, online backup
systems are becoming more and more attractive alternatives to traditional backup. There are hun-
dreds of companies offering online backup services, e.g., SkyDrive, Idrive, Amazon S3. Most of these
companies offer some storage for free and charge fees when the free quota is exceeded. However, all
of these services rely on large data centers and thus incur immense costs.

Peer-to-peer (p2p) backup systems are an elegant way to avoid these data center costs by harnessing
otherwise idle resources on the computers of millions of individual users: all users must provide some of
their resources (storage space, upload bandwidth, download bandwidth, and online time) in exchange
for using the backup service. While the total network traffic increases with a p2p solution, the primary
cost factors that can be eliminated are 1) costs for hard drives, 2) energy costs for building, running
and cooling data centers1, 3) costs for large peak bandwidth usage, and 4) personnel costs for computer
maintenance. A study performed by Microsoft in 2008 showed that about 40% of Windows users have
more than half of their hard disk free and thus would be suitable candidates for using a p2p backup
system. Our own recent user study [21] found that many users are not willing to pay the high fees
for server-based backup and more than half of our participants said they would consider using p2p
backup instead. Thus, there is definitely a considerable demand for p2p backup applications. In fact,
a series of p2p backup applications have already been deployed in practice (e.g., Wuala, Allmydata).
A drawback of the the existing systems is, that all users are generally required to supply the resources
space, upload and download bandwidth in the same ratios.

Our p2p backup system is novel in that it uses a market to allocate resources more efficiently
than a non-market-based system could. Furthermore, we provide users with incentives to contribute
their resources. This is in contrast to non-price based systems like BitTorrent for example, where
numerous research has shown that without proper incentives, file availability rapidly decreases over
time until most content finally becomes unavailable [19]. In our system, the relative market prices
for the different resources function as compact signals of which resources are currently scarce, and
properly motivate those users who value a specific resource least, to provide it to the system in a large
quantity. Some users might need most of their own disk space to store large amounts of data and thus
prefer to sacrifice some of their bandwidth. Other users might use their Internet connection a lot for
services like VOIP or file-sharing and might have a high disutility if the quality of those services were
affected. We allow different users with idiosyncratic preferences to provide different resource bundles,
and we update prices regularly taking into account aggregate supply and demand of all resources.

The design of a p2p backup market involves a series of unusual challenges, in particular at the
intersection of market design and user interface (UI) design. The first and biggest challenge is that
users of a backup system do not expect to interact with a market in the first place, and might find a
market a very odd concept in this domain. This raises the question of how to display prices to the
users if they don’t even know they are interacting with a market-based system. Furthermore, users
cannot be expected to monitor account balances or to make payments to the system. This challenge
arises in many domains, especially in many emerging electronic markets where thousands or millions
of non-sophisticated users interact with market-based systems. While these markets often provide

1In 2008, data centers in the US were responsible for about 3% of the country’s energy consumption. Note that a p2p
backup system cannot only reduce costs but is also more environmentally friendly due to reduced carbon emissions.
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large benefits to the users, they can also be unnatural or complex such that individuals may not have
an easy time interacting with them. To address this challenge in a principled way, we introduce a new
design paradigm which we call “hidden market design.” When designing hidden markets, we attempt
to minimize or “hide” the complexities of the market to make the interaction for the user as seamless
as possible. A hidden market encompasses both, the design of a UI for the market and the design
of the economics of the market. A p2p backup application is particularly well suited to illustrate
the hidden markets paradigm because the application targets millions of technically unsophisticated
users, in a domain where markets are very unexpected and where many users might find the use of
real money unusual. Our proposed design hides many common market aspects from the users.

A second market design challenge arises from the fact that users will only infrequently interact with
this market. They will not continuously update their settings, and thus, price changes will only affect
supply and demand after a delay. As a consequence, the system will be out of equilibrium most of
the time, while trades must be enabled at all times. The third challenge is the combinatorial aspect
of the resource supply that is needed for the production of backup services. All users must provide a
certain amount of all resources, even if they currently only consume a subset of them. For example, a
user who only contributes storage space is useless to the system because no files could ever be sent or
received from that user if no bandwidth is provided. We call these combinatorial market requirements
the bundle constraints because only bundles of resources have value. Displaying the bundle constraints
in a simple way is a major challenge for the UI design. Because many of these challenges are quite
unusual, providing a simple method of interaction to the users, in a domain where they don’t expect
a market, requires the development of new techniques for UI and market design.

1.1. Outline and Overview of Results

We present the market and UI design for a p2p backup system and provide a theoretical and exper-
imental analysis of its properties. In Section 2, we introduce the preliminaries of the p2p resource
market. We enable the market using a virtual currency only, which avoids the various complications a
real-world currency brings along (e.g., state, federal, and international banking laws) and also makes
the system more natural to use. In Section 3, we first explain the hidden market design paradigm
in more detail and then describe the various elements of the specific market UI we developed for the
p2p backup system. In a real p2p backup system, we must expect a delay in users updating their
settings upon price changes, and thus the system will be out of equilibrium most of the time. In
contrast to previous work on data economies, the market is designed to work well even when not in
equilibrium. In our system, users do not have to continuously update demand and supply and instead
periodically choose bounds on their maximum supply and demand. We describe a new slider control,
which simplifies the display of the bundle constraints and provides the users with a linear interaction
with the system. These sliders guarantee that users can only choose supply ratios that satisfy certain
constraints, which enables us to support the market equilibrium with linear prices. The UI exposes
the effect of prices to users only implicitly, so as to avoid invoking a mental model of a monetary
system, and it completely hides the users’ account balances and the payments made in the system.

The economics of the market also involve some unusual design choices. In Section 4, we describe
the market design in detail and list a series of properties of our system design that allow us to model
the market as an exchange economy, even though production is happening. In Section 5, we begin the
analysis of the market equilibrium by advancing a new equilibrium concept, the buffer equilibrium.
Because the p2p backup market will be out of equilibrium most of the time, we must always have a
certain buffer between supply and demand of all resources. We show that the buffer between supply
and demand is maximal in the buffer equilibrium, which motivates it as a desirable target concept.
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We prove that under very reasonable assumptions, the equilibrium is guaranteed to exist, and is
unique. This result also holds if a certain percentage of the user population is price-insensitive or even
adversarial. However, we show that the more freedom we give users in choosing their supply settings,
the less robust the system becomes against adversarial attacks. Furthermore, we show that the size of
the buffer in equilibrium cannot be controlled via price updates alone. We describe which changes in
the UI would be necessary to give the market operator control over the buffer size. In Section 6, we
introduce a price update algorithm that only requires system-wide supply and demand information to
update prices. We prove that the algorithm converges linearly towards the buffer equilibrium when
initial prices are chosen close enough to equilibrium prices. Finally, in Section 7, we present results
from a formative usability study of our system, evaluating how well users can interact with the new
hidden market UI. The results are encouraging and show promise for the hidden market paradigm.

1.2. Related Work

Ten years ago, the research projects OceanStore [14] and FarSite [3] already investigated the potential
of distributed file systems using p2p. Both projects, however, did not take the self-interest of individual
users into account and did not perform any kind of market design. More recently, researchers have
looked at the incentive problem, often with the primary goal to enforce fairness (you get as much
as you give). Samsara [5] is a distributed accounting scheme that allows for fairness enforcement.
However, it does not enable a system where different users can supply resources in different ratios
while maintaining fairness, which is the primary advantage of our market-based system.

The idea to use electronic markets for the efficient allocation of resources is even older than ideas
regarding p2p storage systems. Already in 1996, Ygge et al. [25] proposed the use of computational
markets for efficient power load management. In the last five years, grid networks and their efficient
utilization have gotten particular attention [15]. Fundamental to these designs is that participants are
sophisticated users able to specify bids in an auction-like framework. While this assumption seems
reasonable in energy markets or computational grid networks, we are targeting millions of users with
our backup service and thus we cannot assume that users are able and willing to act as traders on a
market when they want to backup their files.

In the last three years, human computer interaction researchers have gotten more interested in topics
at the intersection of UI design and economics. Hsieh et al. [11] test whether the use of markets in
synchronous communication systems can improve overall welfare. Hsieh et al. [10] explore a similar
idea in the domain of question and answer applications where users could attach payments to their
questions. While their use of markets is similar in vein to our approach, i.e., using markets to most
efficiently allocate resources as is standard in economics [9], in both papers they used a very explicit
UI showing monetary prices to the users.

Satu and Parikh [18] compare live outcry market interfaces in scenarios such as trading pits and
electronic interfaces. They draw a distinction between trying to blindly replicate the real world in
the UI, and locating “defining characteristics” that must be supported. In our work, we adopt this
philosophy and attempt to mask the unnecessary affordances in the hopes that the relevant ones
become easier to use.

From the UI design point of view, the work that is closest to our approach is Yoopick, a combi-
natorial sports prediction market [8]. This application provides a very intuitive UI for trading on a
combinatorial prediction market. The designers successfully hide the complexity of making bets on
combinatorial outcomes by letting users specify point spreads via two sliders. This approach is very
much in line with the hidden market paradigm.

On the theoretical side, the two papers most similar to our work are by Aperjis et al. [2] and
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Freedman et al. [7]. They analyze the potential of exchange economies for improving the efficiency of
file-sharing networks. While the domain is similar to ours, the particular challenges they face are quite
different. They use a market to balance supply and demand with respect to popular or unpopular
files. However, in their domain there is only one scarce resource, namely upload bandwidth, while we
design an exchange market for multiple resources. Furthermore, their design does not attempt to hide
any of the market aspects from the users.

There exist multiple p2p backup applications that are being used in practice and the application
most similar to ours is Wuala (www.wuala.com). However, we know of no other p2p backup system
that uses a market. In the other backup systems, the ratios between the supplied resources space,
upload and download bandwidth are fixed, and the same across all users. The advantage of our
market-based approach is the additional freedom we give the users. Allowing them to supply different
ratios of their resources increases overall economic efficiency and makes the system more attractive
for every user. Note that without using a market, this freedom would not be possible, because there
would be no mechanism to incentivize the users to supply the scarce resources.

2. The p2p Resource Market: Preliminaries

Our system uses a hybrid p2p architecture where all files are transferred directly between peers, but
a dedicated server coordinates all operations and maintains meta-data about the location and health
of the files. The role of the server in this system is so small that standard load-balancing techniques
can be used to avoid scaling bottlenecks.

Each user in the system is simultaneously a supplier and a consumer of resources. A peer on
the consumer side demanding a service (backup, storage, or retrieval) needs multiple peers on the
supplier side offering their resources (space, upload and download bandwidth, and online time). The
production process of the server (bundling multiple peers and coordinating them) is essential, turning
unreliable storage from individual peers into reliable storage. Each peer on the supplier side offers a
different resource bundle while each peer on the consumer side gets the same product, i.e., a backup
service with the same, high reliability.

One natural concern about p2p backup is that individual users have a much lower availability
than dedicated servers. Thus, a p2p system must maintain a higher file redundancy to guarantee
the same file availability as server-based systems. Simply storing multiple file copies would be very
costly. Fortunately, we can significantly reduce the replication factor by using erasure coding [16].
The erasure code splits up a file into k fragments, and produces n > k new fragments, ensuring that
any k of the n fragments are enough to reconstruct the file. Using this technique, we can achieve the
same high reliability as sever-based systems while keeping replication low. For example, if users are
online 12h/day on average, using erasure coding we can achieve a file availability of 99.999% with a
replication factor as low as 3.5, compared to simple file replication which would have a factor of 17.

The process for backing up files involves four steps. First, the user’s files are compressed. Then
the compressed files are automatically encrypted with a private key/password that only the user has
access to (via Microsoft LiveID). Then, the encrypted file is erasure coded, and then the individual
fragments are distributed over hundreds of peers. Using this process, the security of the p2p backup
system can be made as high as that of any server-based system.

Table 1 describes the five high-level operations in the p2p system. Note that all of the system-level
processes happen without user interaction. All the user has to do is initiate a backup operation, a
retrieval operation, or delete his files when he wants to.
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Operation Description Resources Required from Suppliers

Backup When a user performs a backup, file
fragments are sent from the consumer
to the suppliers.

Download Bandwidth

Storage Suppliers must persistently store the
fragments they receive (until they are
asked to erase them

Space

Retrieval When a user retrieves a backup, file
fragments are sent from the suppliers
to the consumer.

Upload Bandwidth

Repair When the server determines a backed
up file to be unhealthy, the backup is
repaired.

Download and Upload Bandwidth

Testing If necessary, the server initiates test
operations to gather new data about
a peer’s availability.

Download and Upload Bandwidth

Table 1: Operations and their Required Resources.

Prices, Trading & Work Allocation. All trades in the market are done using a virtual currency.
Each resource has a price at which it can be traded and in each transaction the suppliers are paid for
their resources and the consumers are charged for consuming services. Prices are updated regularly
according to current aggregate supply and demand, to bring the system into equilibrium over time.

Trading is enabled via a centralized accounting system, where the server has the role of a bank. The
server maintains an account balance for each user starting with a balance of zero and allows each user
to take on a certain maximal deficit. The purpose of the virtual currency is to allow users to do work
at different points in time while keeping all contributions and usages balanced over time. Users have
a steady inflow of money from supplying resources and outflow of money from consuming services,
which varies over time. In steady state, when users have been online long enough, their income must
equal their expenditure. Users cannot earn money when they are offline but must still pay for their
backed up files. Thus, their balance continuously decreases during that time. When using real money,
we could simply charge users’ credit cards as their balance keeps decreasing. However, as long as we
do not use real money, the maximum deficit that users can take on must be bounded. Ultimately, it is
a policy decision what happens when a user hits a pre-defined deficit level. Our system will first notify
the users (via email and visually in the application) and present options to remedy the situation (e.g.,
increase supply). Failing this after a reasonable timeout period (e.g., 4 weeks), the users’ backups will
be deleted. The server is involved in every operation, coordinating the work done by the suppliers and
allocating work to those users with the lowest account balances to drive all accounts (back) to zero
over time. This is possible because users’ steady-state income must equal their expenditure. Thus,
when users have been online for a sufficient time period, their account balance is always close to zero.

3. The Hidden Market User Interface

The UI is an essential aspect of the market design because it defines the information flow between
the user and the market. The server needs to elicit a user’s individual preferences, and a user needs
to “experience” the current market prices. However, direct preference elicitation methods (directly
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asking the users for their valuations) are infeasible to implement because the amount of communication
would be too high, but more importantly, because the majority of users are non-experts and would
find such an interaction very complicated, unnatural, and cumbersome. To make the interaction for
the user as easy as possible, we design a hidden market UI where we attempt to mask as much of the
prices, account balances, trading constraints, etc. from the user as possible. To do this, we project
a hidden market UI wrapped around the actual market to expose a simplified interface to the user
(illustrated in Figure 1). The goal in designing this hidden market UI is to establish a feedback loop
between the market and the user, without invoking a mental model of a monetary market.

Figure 1: The hidden market UI wraps around the complex underlying market and exposes a simpler
interface, invoking a particular mental model in the user, whose actions influence the market.

3.1. What You Give is What You Get

Figure 2 displays the market UI. The user can open this “settings window” to interact with the market.
This window is separated into two sides: on the left side, the users can choose how much online backup
space they need. On the bar chart the users can see how much they have already backed up and how
much free online backup space they have left. On the right side of the window, the users can choose
how much of their own resources they want to give up in return. On the top of the right side, the users
see the storage path, i.e., where the file pieces from other users are stored on their own computers.
Then, for each of the resources of space, upload and download bandwidth, there is a separate slider
which the users can move to specify how much of that resource the system should maximally use.2

Below the sliders the current average online time of the users is displayed.3 Next to the online time
information the system also tells the users the effect of leaving their computer online for one more
hour per day (i.e., how much more online backup space they would get in return). This shall make the
users aware of the important role of their online time: the longer the users are online, the more useful
their supply of space, upload and download bandwidth becomes, and thus the higher their income.

To change anything about their settings, the users can drag the bar chart on the left side up or
down, move any of the sliders on the right side, or change how often they are online. Both sides of
the window are connected to each other, such that a change on either side affects and dynamically
updates the values on the other side as well. The semantics of this connection are important: on
average, users must pay for the total consumption chosen on the left side with the supply chosen on

2The maximum value for these sliders can be determined automatically: the limit for space is simply the free space on
the users’ hard drives; the bandwidth limits can be determined via speed tests.

3To change this value the users have to leave their computer online for more or fewer hours per day than they are
currently doing, though we can conceive of schemes in which the application can directly control such settings as
power savings and hibernate mode.
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Figure 2: Screenshot of the advanced settings UI. On the left side, the user can choose the desired
amount of online backup space. On the right side, the user can fine-tune the supply settings
if desired. Account balances, prices and payments are hidden from the user.

the right side. If a user increases any of the sliders on the right then the bar chart on the left grows
because the amount of free online backup space increases. If a user decreases a slider then the bar
chart on the left shrinks, because the amount of free online backup space decreases. When a user
directly drags the bar chart up or down to choose how much free online backup space he wants, then
the three sliders on the right side move left or right, proportionally to their previous position.4

The UI allows users to express their idiosyncratic preferences over consuming backup services and
supplying their resources. For example, if a user needs 20 GB of free online backup space, there are
several different slider settings that allow this. Some users might specify to give more space and less
bandwidth, others might specify it the other way around, depending on their available resources and
individual preferences. Because a user’s preferences can change over time this is not a task that can
easily be automated. Note that we do not expect users to constantly adjust their settings. Rather,
we expect users to choose settings that give them enough online backup space such that they do not
have to worry about their settings for a while. However, as they near their quotas, the system will
notify them (via an email and visually in the application). At that point, we expect most users to
adjust their sliders again, according to their preferences and then current market conditions.

3.2. Combinatorial Aspects of the Market: Bundle Constraints

The first challenge regarding the hidden market design for this application is the combinatorial nature
of the market, i.e., the problem that only bundles of resources are useful to the system. In general, the

4Note that in practice we expect roughly two categories of users: basic users will only ever use the left side of the
window to choose how much online backup space they need. They either do not care about which resources they
give up, or they do not even understand the meaning of upload bandwidth, download bandwidth, etc. The second
category of users are the advanced users, i.e., those users that understand the meaning and relevance of giving up
their own resources and want to control their supply. In a deployed system, the settings window would initially show
the left side of the window and only upon clicking an “advanced” button would the right side appear.
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Figure 3: The new slider control provides an indirect visualization of the bundle constraints. When
user provides more of one resource than is useful to the system, gets notified via a small
popup window.

free online backup space increases when the users increase one of their sliders. However, this is only
true for a subset of possible slider positions. In particular, if a user keeps increasing one slider towards
the maximum while the other two sliders are relatively low, at some point the online backup space
on the left might stop increasing. For example, if users limit their upload bandwidth to 5 KB/s, then
increasing their space supply from 50 GB to 100 GB should not increase their online backup space.
We would simply never store 100 GB on these users’ hard disks because 5 KB/s would not be enough
to have a reasonable retrieval rate for all of these file pieces. Thus, for the system to use the whole
supply of 100 GB, the users would first have to increase their supply of bandwidth. An analogous
argument holds true for other combinations of resources. For example, if a user wanted to give a lot
of upload bandwidth but keep the supply of space low, then at some point giving more bandwidth
would not be useful. Again, to make use of the download bandwidth, the system would need to store
many file pieces on that user’s computer which is not possible given the current low limit on space.5

Because of these “bundle constraints”, we need users to respect certain supply ratios when choosing
their supply settings. To provide the users with some visual information regarding how much supply
of a resource is “useful to the system” given the current other slider settings, we augmented the
traditional slider UI element, building the new slider control shown in Figure 3. The sliders are
colored blue and gray, and the legend on the top right of the window explains the color coding. In the
blue region, slider movements have an effect on the online backup space because setting the slider to
any position inside that region means that the system can effectively use all of the supplied resource.
The gray region of the slider is the region where slider movements no longer have an effect on the
user’s online backup space because giving that much of the resource is “not useful to the system,”
given the other settings. Because the colors and the legend might be difficult to understand or be
overlooked, we also notify the user once the slider is moved from the blue into the gray region with a
small pop up message that disappears once the mouse button is released (see Figure 3).

The color-coded sliders provide the user with all the necessary information about the bundle con-

5These bundle constraints only apply to space, upload and download bandwidth. For “availability” there is no minimum
or maximum supply that is useful, independent of the other resources.
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straints. When one slider is moved down, the blue regions on the other two sliders first stay the same
and eventually decrease. Analogously, when one slider is moved up, the blue regions on the other two
sliders first increase and eventually stop increasing. If a user sets the sliders in the same ratios as the
system-wide usage of all resources, they are always inside the blue regions. However, requiring this
exact ratio from all users is too restrictive, ignoring the system’s flexibility in allocating work. For
example, the system can allocate more repair and testing operations to users that prefer to give up
lots of bandwidth instead of space. Furthermore, the system can estimate how often certain users
access their backups and then send file fragments from “cold backups” to users who prefer to give
up more storage space rather than bandwidth. To maximize overall efficiency, we make use of this
flexibility, and allow every user to supply different ratios of their resources, within certain bounds of
the system-wide ratios. In Section 4.2, we explain this concept more formally.

3.3. Exposing/Displaying Market Prices

Because the UI gives users some freedom in choosing their resource supply, we must price the resources
correctly. In our system, prices are updated daily depending on aggregate demand and supply, moving
the system into equilibrium over time. Without updating prices, we might have a supply shortage for
some resources. For example, many users might decide to give lots of disk space and little bandwidth.
To counteract a shortage of bandwidth, we would increase the price of bandwidth, incentivizing users
to give more bandwidth instead of space. But for this mechanism to work, it is necessary that prices
are at least indirectly exposed to users, so they can react and change their supply settings. For
example, if the price for upload bandwidth went up relative to download bandwidth, then users might
benefit from increasing their upload bandwidth supply a little and in return decreasing their download
bandwidth supply a lot.

However, users don’t expect monetary transactions in a backup application, which also renders
“prices” an unnatural concept. This is why we have chosen to hide the prices in the UI as much as
possible. In our UI, a user can “experience” the relative prices indirectly by moving the sliders while
observing the bar chart on the left. If a user moves a slider a little and the bar chart only changes a
little, this means that the current price for that resource is relatively low. If a user moves a slider a
little and the bar chart changes a lot, this means that the current price for that resource is relatively
high. This is one of the essential aspects of this hidden market UI: it allows us to communicate the
current market prices to a user in a non-explicit way. In particular, users can be unaware of the
price-based market underlying the backup system, and yet over time they will notice that for some
resources they get more in return than for others. They can then choose the supply combination that
is currently best given their preferences. Note that one of the market design goals was to implement a
very simple pricing system to provide even non-expert users with a seamless interaction. We achieve
this, despite the bundle constraints, by providing the users with a linear interaction with the system,
as long as they move the sliders within the blue regions (the bar chart on the left moves up and down
linearly when a user moves one of the sliders on the right). More specifically, we expose simple, linear
prices to the users, and take care of the bundle constraints by restricting the choices they can make
in the UI using the slider controls.

4. Market Design & Economic Model

In this section we introduce a formal economic model to describe the market design in detail and to
allow for a theoretical economic analysis of the properties of the p2p market system. At all times, the
model is formulated such as to represent the implemented system as closely as possible.
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4.1. User Preferences

The economy comprises I users who are simultaneously suppliers and consumers. The set of com-
modities in the market is denoted L = {S,U,D,A,B,Σ, R}. The first four commodities are space
(S), upload bandwidth (U), download bandwidth (D), and availability (A), which are the resources
that users supply. The last three commodities are backup service (B), storage service (Σ), and re-
trieval service (R), which are the services that users consume. By slightly abusing notation, we
sometimes use S,U,D, etc. as subscripts, and sometimes they denote the resource domain, e.g., for
a particular amount of upload bandwidth u we require that u ∈ U . Each user i has a fixed en-
dowment of the supply resources (defined by the user’s hard drive and Internet connection), denoted
wi = (wiS , wiU , wiD, wiA) ∈ S × U ×D × [0, 1].

The next aspect of the model is driven by our UI. Via the sliders, the user selects upper bounds for
the supply vector, which we denote Xi = (XiS , XiU , XiD, XiA). In return for the supply Xi, the user
interface shows the user the maximum demand of services, denoted Yi = (YiB, YiΣ, YiR). In Figure 2
the user has currently chosen XiS = 80.8GB, XiU = 400KB/s,XiU = 300KB/s and XiA = 0.5 as
the maximum supply vector.

At any point in time, a certain set of resources from the user are being used, always less than
Xi, and a certain set of services is being demanded. We denote user i’s current supply as xi =
(xiS , xiU , xiD, xiA), and analogously user i’s current demand for services as yi = (yiB, yiΣ, yiR). The
user does not choose xi and yi directly via the UI. Instead, the server chooses xi (obeying the bound
Xi) such that user i can afford the current demand yi which the user simply chooses by backing up
files or retrieving them. Note that the UI displays the user’s consumption vector in an aggregated
way; i.e., instead of listing the services backup, storage, and retrieval separately, we simply display
the currently used online backup space (= 17.28GB in Figure 2) and the maximum online backup
space that user could consume (= 33.5GB in Figure 2).

In practice, users have a certain cost for opening the settings window and adjusting the settings.
Instead of modeling this cost factor directly, we assume that when users open their settings window,
they are planning ahead for the whole time period until they plan to open the settings window the
next time. While a user might currently consume yi, he plans for consuming up to Yi the next time he
opens the settings window. He then selects the supply vector Xi that he is willing to give up to get this
Yi. The user cares about how large the bounds on his supply are, because he has negative utility for
giving up his resources. To make this more formal, we letKi = wi−Xi withKi ∈ S×U×D×A, denote
the vector of resources that the user keeps, i.e., his endowment minus the supply he gives up. Note
that any changes to Xi translate into changes for Ki and vice versa because the endowment vector
wi is fixed. We only introduce Ki to define a preference relation that is monotone in all components,
but we will use the supply vector Xi going forward. We can now specify the user’s preference relation
over all the resources he keeps, and the services he consumes: ≽i (KiS ,KiU ,KiD,KiA, YiB, YiΣ, YiR).
We make the following assumptions which are all standard in economics (cf. [17], chapters 1-3):

Assumption 1. Each user’s preference relation ≽i (KiS ,KiU ,KiD,KiA, YiB, YiΣ, YiR) is (i) complete,
(ii) transitive, (iii) continuous, (iv) strictly convex, and (v) monotone.

Strict convexity requires strictly diminishing marginal rates of substitution between two goods, i.e.,
we need to compensate a user more and more with one good as we take away 1 unit of another good.
This is a reasonable assumption because it represents a general preference for diversification. Mono-
tonicity means that all commodities are “goods”, i.e., if we give users more of any of the commodities,
they are at least as well off as before.6 Given complete, transitive, and continuous preferences, there

6Note that we do not assume strict monotonicity because we will later assume that service products are perfect
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exists a utility function ui(Ki, Yi) = ui(KiS ,KiU ,KiD,KiA, YiB, YiΣ, YiR) that represents the prefer-
ence relation and this utility function is continuous (cf. [17], p.47).

As mentioned before, the only resource that is not subject to the combinatorial bundle constraints,
is availability : as long as the user’s availability is larger than zero, the other resources can be used.
To simplify the economic model and pricing of resources, we introduce three new composite resources
S,U, and D, incorporating the user’s availability into the other resources in the following way:

• XiU ∈ U = XiU ·XiA · 24 · 60 · 60.
• XiD ∈ D = XiD ·XiA · 24 · 60 · 60.
• XiS ∈ S = φ(XiS , XiA) ≈ XiS ·XiA · overhead factor

Note that this notation denotes composite and not vector quantities. The definitions for the com-
posite resources upload and download bandwidth are straightforward: we multiply the bound on
bandwidth the user supplies (e.g., 300 KB/S) with the user availability ∈ [0, 1] and then multiply it
with 24 hours, 60 minutes and 60 seconds, to calculate how many KBs we can actually send to this
user per day. The definition of XiS is a little more intricate because the user’s availability does not
enter linearly into the calculation. However, it enters monotonically, i.e., more availability is always
better. Here, it suffices to know that the server can compute this function φ and convert a user’s
space and availability supply into the new composite resource.

We can now define user i’s supply vector for the three composite resources: Xi = (XiS , XiU ,XiD).
The advantage of using these “availability-normalized” composite resources is that now, the supply
from different users with different availabilities is comparable. For example, 1 unit of S from user
i with availability 0.5 is now equivalent to 1 unit of S from user j with availability 0.9. Obviously,
internally user i has to give much more space to make up for his lower availability, but in terms of
bookkeeping, we can now operate directly with composites. We define the aggregate supply vector
for the composite resources as X =

∑
iXi, and analogously for Y , x and y. We make the following

well-known observation (cf. [17], chapter 3) that will be useful later:

Observation 1. The individual and aggregate supply and demand functions Xi, Yi, X, and Y are
homogeneous of degree zero.

4.2. Production Functions and Slack Constraints

We have already mentioned the important role of the server in our market, i.e., that of combining
resources from different suppliers into a valuable bundle. Note that the server is in fact the only
producer in the market. One can think of this as if every user had access to the same production
technology to convert input resources into services. This is crucial for our model and the economic
analysis, because it allows us to define an exchange economy where the users only exchange factor
inputs, despite the fact that production is happening in the market (cf. [17], pp. 582-584). Thus, for
each service, we have one production function that defines how many input resources are needed to
produce one unit of that service:

• Backup: fB : S × U ×D → B

• Storage: fΣ : S × U ×D → Σ

• Retrieval: fR : S × U ×D → R

complements, which violates strict monotonicity of preferences. We discuss this in more detail in Section 5.
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These production functions are defined via the implementation of our system, i.e., the particular
production technology that we implemented. For example, they are defined via the particular erasure
coding algorithm that is being used, by the frequency of repair operations, etc. Thus, we can now
specify a series of properties that these production functions guarantee due to our implementation:

System Property 1. (Fixed Production Functions) Production functions are fixed and the same for
all users.

System Property 2. (Additivity) The production functions are additive, i.e., ∀l ∈ {B,Σ, R} and
for any two resource vector x⃗1 and x⃗2 : f

l(x⃗1 + x⃗2) = f l(x⃗1) + f l(x⃗2).

System Property 3. (CRTS) The production functions exhibit constant returns to scale (they are
homogeneous of degree 1), i.e., ∀l ∈ {B,Σ, R}, for any x⃗, and ∀k ∈ ℜ : f l(k · x⃗) = k · f l(x⃗).

System Property 4. (Bijectivity) Each production function is bijective, and thus we can take the
inverses:

• fB−1
: B → S × U ×D

• fΣ−1
: Σ → S × U ×D

• fR−1
: R → S × U ×D

Property 1 holds because the server is the only producer, and because of the way we have defined
the composite resources, with any differences between the users’ availabilities already considered.
Properties 2 (Additivity) and 3 (CRTS) hold because the erasure coding algorithm (which defines the
production technology) exhibits these properties.7 Property 4, the bijectivity of production, holds,
because for each service unit, there is only one way to produce it. For example, to backup one
file fragment, the erasure coding algorithm tells us exactly how many supplier fragments we need,
and the server tells us how much repair and testing traffic we can expect on average per fragment.
Furthermore, it is obvious that small changes in the input of the inverse production functions result
in small changes in the output. More formally:

System Property 5. (Continuity) The inverse production functions are continuous.

Given the inverse functions for the individual services backup, storage, and retrieval, we can define
an inverse function for a three-dimensional service vector (b, σ, r) ∈ B × Σ×R:

f−1(b, σ, r) = fB−1
(b) + fΣ−1

(σ) + fR−1
(r) (1)

Given a demand vector y, we use f−1(y) to refer to the vector of supply resources that are necessary
to produce y. Furthermore, we use f−1

S
(y), f−1

U
(y), and f−1

D
(y) to refer to the individual amounts of

supply resources that are necessary to produce y.

We now formalize the flexibility we give our users in setting different ratios of their supplied re-
sources. Because of the bundle constraints, a user cannot reduce his supply of resource k towards
zero without affecting the supply of his other resources. To determine what ratios are acceptable, i.e.,

7Note that these two properties only hold approximately and not exactly, and only for file sizes above a certain threshold
(approx. 1MB). Very small files are an exception and need special treatment in the implementation, because they
are more expensive to be produced (again due to the erasure coding). We take care of this in the implementation by
charging users more when they are backing up small files (essentially we have two sets of prices, one for normal files
and one for small files).
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useful to the system, we look at the system-wide usage of each resource k, i.e.: f−1
k (y). Certainly,

if a user provides his resources in the same ratios as the system-wide usage, then all of his supply is
usable. However, because the system has flexibility in allocating differnt kinds of work (repair/testing
traffic vs. “cold backups” vs. “hot backups”), we can let the users’ supply ratios deviate from the
system-wide ratios to a limited degree. We let γ > 1 denote the amount of slack we allow users when
setting their supply-side sliders. The corresponding slack constraints, lower-bounding the supply for
resource k, constitute another system property:

System Property 6. (Slack Constraints) Given slack factor γ, for each resource k ∈ {S,U,D}, the
user interface enforces the following minimum ratios of supplied resources:

∀i, ∀l ∈ {S,U,D} \ {k} :
Xik

Xil

≥ 1

γ
·
f−1
k (Y )

f−1
l (Y )

(2)

Note that the UI does not actually limit the range of the sliders according to the slack constraints.
If a user chooses to supply too little of one resource such that a slack constraint is violated, then
the system only uses/considers the maximum amount of the others resource such that the slack
constraint binds. The UI visualizes this to the users via the blue regions, which are effectively indirect
representation of the slack constraints, showing the user which settings are useful to the system. Thus,
Equation 2 correctly models the slack constraints. If we actually limited the range of the sliders, then
making larger changes with the sliders (which is necessary to explore the settings space) would be too
tedious.

In our implementation, we set γ = 2. Thus, to give an example, if the system-wide usage ratio of
space to upload bandwidth were 6, then each user would have to choose his individual settings with a
ratio of space to upload bandwidth of at least 6 · 12 = 3, and the ratio of of upload bandwidth to space
would have to be at least 1

6 · 1
2 = 1

12 . How large we can set γ in practice depends on how flexible the
system is in terms of allocating work (i.e., how many “cold” vs. “hot” backups there are, how much
repair and testing traffic there is, etc.). In practice, the slack factor γ would have to be adjusted over
time, when the distribution of work changes. This process could be automated, but here we are not
going into the details of this process.

While every individual user is free to choose any supply setting within the slack constraints, of
course the aggregate supply of each resource must always be large enough to satisfy current aggregate
demand. But if every user chooses a supply setting such that the same slack constraint binds (e.g.,
every user minimizes his supply of upload bandwidth), then the system does not have enough supply of
the corresponding resource. This is were the pricing algorithm comes into play: by regularly updating
market prices according to current aggregate demand and supply, we balance the market such that
different users will indeed supply different ratios of their resources. We discuss this aspect in more
detail in Section 5 where we also prove that for any set of user preferences, there always exists a price
vector that balances the market and guarantees enough supply of each individual resource.

4.3. Prices and Flow Constraints

In Section 3.2, we have explained how we display the bundle constraints to the users in the UI. The
UI automatically enforces that the users only choose supply vectors that satisfy the slack constraints
(cf. System Property 6) and this enables us to support an equilibrium with linear prices. We use
p = (pS , pU , pD) for the prices for supplied composite resources, and q = (qB, qΣ, qR) for the demanded
services. We require that in steady state, i.e., when a user has been online long enough, he can pay for
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his consumption with his supply. In other words, his flow of supplied resources must be high enough
to afford the flow of consumed services. We can express this flow constraint formally:

Xi · p = Yi · q (3)

At the same time, the server allocates enough work to user i such that the user’s current supply xi
is enough to pay for the demand yi, which leads to a second flow constraint:

xi · p = yi · q (4)

We make the following assumption regarding the usage of resources in the system:

Assumption 2. (Closed System & No Waste) We assume a closed system where no resources are
entering or leaving the market, and we assume that no resources are wasted. Thus, the amount of
resources required to produce the current aggregate demand is always equal to the current aggregate
resource supply, i.e.: f−1(y) = x.

Proposition 1. Given a closed system and no waste of resources (Assumption 2), and given that
production functions are additive (System Property 2), the payments from consumer i to the server
must equal the payments from the server to the corresponding suppliers, i.e.:

yi · q = f−1(yi) · p (5)

Proof. From the flow constraint in Equation 4 we know that xi · p = yi · q. By summing over all
users on both sides of the equation it follows that x · p = y · q. Given Assumption 2, we know that
f−1(y) = x. By plugging this into the previous equation, we get f−1(y) ·p = y · q. From the additivity
of the production functions we know that this is equivalent to

∑
i f

−1(yi) · p =
∑

i yi · q. Because each
transaction is treated equally in the system (every user is payed the same for the same resources), it
follows that f−1(yi) · p = yi · q.

Using Proposition 1, we can now re-write the flow constraints for user i as:

Xi · p = f−1(Yi) · p and xi · p = f−1(yi) · p (6)

Thus, from now on, we can omit the price vector q for demanded services and only need to consider
price vector p8, i.e., all what matters are the relative prices of the supply resources. Remember that
the UI automatically calculates and adjusts the maximum demand vector Yi for user i based on the
user’s supply bound Xi. In practice, the maximum income is divided by the current average income of
the user, and the resulting factor is multiplied with the user’s current demand, giving us the maximum
demand the user can afford:

System Property 7. (Linear Prediction for Individual Demand) The system uses a linear demand
prediction model for the calculation of a user’s maximum demand Yi:

Yi =
Xi · p
xi · p

· yi = λi · yi

We make the following simplifying assumption:

8Going forward, please remember that multiplications with p are always dot products, and thus p showing up on the
left and the right side of an equation does not cancel out.
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Assumption 3. (Linear Prediction for Aggregate Demand) We assume that with a large number of
users, a linear demand prediction is also correct for the aggregate demand vectors, i.e.:

∃λ : Y = λ · y

This assumption is justified because in practice, such a system would have a large number of users.
Let n denote the number of users in the economy, let Y n =

∑n
i=1 Yi, y

n =
∑n

i=1 yi, and let µ(λi)
denote the mean of the distribution of the λi’s. Given that the λi’s are independent from the yi’s, it
follows from the strong law of large numbers, that if the number of users n is large enough, then Y n

is linearly predictable by µ(λi) · yn along each dimension to any additive error. More specifically, for
any ε and δ ≥ 0, for large enough n:

Pr[||Y n − µ(λi) · yn|| ≤ ε] ≥ 1− δ.

5. Equilibrium Analysis

A real-world instance of the p2p backup application would have thousands if not millions of users.
Thus, the underlying market would be large enough so that no individual user had a significant effect
on market prices. Consequently, users can be modeled as price-taking users and a general equilibrium
model is suitable to analyze this market. Here we analyze a static equilibrium in which all users adjust
their supply bounds to reach target demand bounds, i.e., whenever the price vector p is updated, user
i chooses Xi(p) and Yi(p) such as to maximize his utility. While a user does not choose xi (user
i’s supply that is currently used) and yi (user i’s current demand vector) directly via the UI, these
quantities nevertheless depend on current prices, though indirectly, because xi ≤ Xi and yi ≤ Yi.
Thus, while current demand and supply vectors xi and yi will vary much less with price changes,
we must still model them as being dependent on prices, and we use xi(p) and yi(p) to reflect that.
Throughout this section, we assume that System Properties 1 through 7 and Assumptions 1 through
3 hold.

5.1. The Buffer Equilibrium

We begin this section by asking the question what the target equilibrium should be when we are
updating prices. Note that there only is an equilibrium pricing problem in the first place because we
give users the freedom to supply different ratios of resources. Without any slack, the UI would enforce
that every user supplied the resources in the same ratios as system-wide demand for resources, and
thus price changes would have no effect. But because we give our users the freedom to choose different
supply ratios, we must update prices over time, to avoid situations where we don’t have enough supply
for a resource to satisfy current demand. But what should be our target?

A standard equilibrium concept in general equilibrium theory is the Walrasian equilibrium, which
requires that demand equals supply such that the market clears. Certainly we want to have enough
supply to satisfy current demand, i.e.:

x(p) = f−1(y(p)).

But remember that users are not continuously adjusting xi, and as a consequence, the system will be
out of equilibrium most of the time. Thus, our goal should not be to clear the market in equilibrium,
but instead to always have some excess supply of all resources, to make sure we can satisfy any
demand even out of equilibrium. The larger the “buffer” between the current demand of resources,
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i.e., f−1(y), and the maximum supply of resources, i.e., X, the safer the system, i.e., the more “out
of equilibrium” it can cope with before running into trouble. We will use this “size of the supply-side
buffer” repeatedly and thus we define it more formally:

Definition 1. (Size of the Supply-Side Buffer for a Resource) The size of the supply-side buffer for
resource l is the ratio of maximum supply to current demand for that resource, and we denote this
buffer with Bl(p):

Bl(p) =
X(p)l

f−1
l (y(p))

(7)

If we assume that the supply and demand for the individual resources have the same variance, then
the best we can do to maximize the safety of the system out of equilibrium, is to maximize the size of
the buffer across all three resources.9 This naturally leads to the definition of the overall size of the
supply-side buffer:

Definition 2. (Overall Size of the Supply-Side Buffer) The size of the overall supply-side buffer B(p)
is the smallest supply-side buffer across all resources, i.e.:

B(p) = min
l∈{S,U,D}

Bl(p) (8)

Now the question is, which price vector maximizes the overall supply-side buffer. It is intuitive,
that to maximize the overall supply-side buffer, the individual buffers must all be equal (otherwise we
might update prices to decrease the largest buffer and increase the samllest buffer). This naturally
leads us to the following definition of a “buffer equilibrium”:

Definition 3. (Buffer Equilibrium [Version 1]) A Buffer equilibrium is a price vector p = (pS , pU , pD),
an aggregate supply vector X(p), and an aggregate current demand vector y(p), such that the individual
supply-side buffers are the same across all resources, i.e.:

BS(p) = BU (p) = BD(p) ⇔
XS(p)

f−1
S

(y(p))
=

XU (p)

f−1
U

(y(p))
=

XD(p)

f−1
D

(y(p))
(9)

It seems very reasonable to assume that, as we decrease the price for one resource k, the supply-side
buffers for the other two resources will increase. Decreasing pk makes it less attractive for the users to
supply resource k, and makes it relatively more attractive to supply the other resources. If we make
this assumption more formally, we can indeed prove that for the supply-side buffer to be maximal,
the system must be in a buffer equilibrium, thus justifying the buffer equilibrium as a desirable target
concept.

Assumption 4. (Resource Buffers are Gross Substitutes) We assume that the individual buffer func-
tions Bl(p) satisfy the gross substitutes condition, i.e., whenever p′ and p are such that, for some k,
p′k > pk and p′l = pl for l ̸= k, we have Bl(p

′) < Bl(p) for l ̸= k.10

9If we have specific information about the variance in the supply and demand of certain resources, we would want to
target higher buffers on the resources with high variance and lower buffers on resources with low variance. This can
easily be incorporated and would only lead to a slightly different equilibrium definition.

10Note that this assumption is similar to the more standard assumption that the excess demand function satisfies
the gross substitute property, however, they are not equivalent. We assume that, as we decrease the price on
one resource, the ratio between supply and demand for all other resources will increase, while the standard gross
substitutes assumption states that the difference between supply and demand for all other resources will increase.
Neither assumption implies the other, although both can be true simultaneously.
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Proposition 2. Given Assumption 4 (Resource Buffers are Gross Substitutes), when the overall
supply-side buffer B(p) is maximal, then the market has reached a buffer equilibrium.

Proof. We present a proof by contradiction. Let’s assume that p is a price vector such that the overall
supply-side buffer is maximal, but where the resource buffers are not the same across all resources as
they must be in the buffer equilibrium. Assume that k = argmaxl∈{S,U,D} Bl(p), i.e., the buffer for

resource k is maximal across all resources. Now, we consider price vector p′ where we have decreased
the price of resource k slightly and kept the prices of the other resources constant, i.e., p′k < pk
and p′l = pl ∀l ̸= k. Given that the individual resource buffers satisfy Assumption 4, we know that
Bl(p

′) > Bl(p), and due to homogeneity of degree zero, it also follows that Bk(p
′) < Bk(p), i.e., the

resource buffer size for k has decreased and both other resource buffer sizes have increased. Because
of the continuity of users’ preferences (Assumption 1) and the continuity of the inverse production
function (System Property 5), it follows that X(p) and f−1(y(p)) are continuous, and thus we can
always find a small enough price change from p to p′, such that the buffer for resource k is still
maximal, but in the process we have increased the buffers for the other two resources. Thus, the
overall supply-side buffer is larger for p′ than it was before, i.e., B(p′) > B(p) which violates our
assumption that the supply-side buffer with price vector p is maximal, which leads to a contradiction
and completes the proof.

We have just shown that when the overall supply-side buffer is maximal, then the market has
reached a buffer equilibrium. One concern might be that this does not automatically imply that the
supply-side buffer will be maximal in every buffer equilibrium. However, we will show in Section 5.4
that under certain assumptions, the buffer equilibrium is unique, which removes this concern and
implies that the buffer equilibrium is indeed a good target concept. Note that we truly believe that
Assumption 4 is satisfied in our domain, and thus, the overall supply-side buffer is indeed maximal
in the buffer equilibrium. However, we do not need this assumption going forward. We only used it
to provide a formal motivation for the introduction and use of the buffer equilibrium concept, but
all statements in the remainder of the paper are also true for the buffer equilibrium, without this
assumption.

We now offer an alternative definition of the buffer equilibrium which relates it to the well-known
concept of a Walrasian equilibrium:

Definition 4. (Buffer Equilibrium [Version 2]) A Buffer equilibrium is a price vector p = (pS , pU , pD),
an aggregate maximum supply vector X(p), and an aggregate maximum demand vector Y (p), such that:

X(p) = f−1(Y (p))

i.e., it is a Walrasian equilibrium defined on the supply and demand bounds chosen by the users.

It is easy to show that the two definitions for the buffer equilibrium are equivalent (proof provided
in Section A of the Appendix):

Lemma 1. Given Assumption 3 (Linear Prediction for Aggregate Demand), the 1. and 2. definitions
of the Buffer Equilibrium are equivalent, i.e.:

BS(p) = BU (p) = BD(p) ⇔ X(p) = f−1(Y (p)).
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5.2. Equilibrium Existence

In this section, we prove that a buffer equilibrium exists in our model. We let L = {S,U,D} and we
use l to index a particular composite resource. We define the vector-valued relative-buffer function
Z(p) which measures the relative buffer for each individual resource in the following way:

Zl(p) =
X l(p)

f−1
l (y(p))

−
(∑k

Xk(p)

f−1
k (y(p))

|L|

)
(10)

In words, the first term represents the supply to demand ratio of the particular good l. The second
term represents the average supply to demand ratio, in our case averaged over the three goods storage
space, upload and download bandwidth. Thus, Zl(p) represents how far the “buffer” between supply
and demand for good l is away from the average buffer. We have reached a buffer equilibrium when
the buffer is the same for all goods, i.e., when:

Z(p) = 0.

Lemma 2. Given that users’ preferences are strongly monotone with respect to supply resources, the
relative-buffer function Z(·) has the following property: If pn → p, with p ̸= 0 and pk = 0 for some k,
then for n sufficiently large

∃l : Zl(p
n) > Zk(p

n).

Proof. Because p ̸= 0, for n large enough, there exists a resource l such that pnl > 0. As the price
of resource k ∈ {S,U,D} goes towards zero, due to users’ strictly convex and strongly monotone
preferences for supply resources, they will supply less and less of k, and supply more of the other
resources instead, at least of resource l whose price is bounded away from zero. However, because of
the slack constraints, the users cannot reduce their supply of resource k towards zero, or increase their
supply of resource l arbitrarily high. Let γ > 1 denote the slack factor we allow users when setting
their preferences. The corresponding slack constraints (see System Property 6), lower-bounding the
supply for resource k, are:

∀l ∈ L \ {k} : Xik(pn) ≥
1

γ
·
f−1
k (y(pn))

f−1
l (y(pn))

·Xil(pn)

As pn → p with p ̸= 0 and pk = 0, for n large enough, pnk will be sufficiently close to zero, such that
each user i chooses to supply the minimal amount of resource k that is possible. Thus, at least with
respect to one of the other resources l or m, the slack constraint will be binding, i.e.,:

∀i : Xik(pn) =
1

γ
·
f−1
k (y(pn))

f−1
l (y(pn))

·Xil(pn) ∨ Xik(pn) =
1

γ
·
f−1
k (y(pn))

f−1
m (y(pn))

·Xim(pn)

This does not mean that the slack constraint will be binding for the same resource l or m for every
user. In fact, it is possible that user i will minimize his supply of resources k and l, while user j
minimizes his supply of resources k and m. However, because every user contributes least to the
supply-side buffer for resource k, this implies:

∃l : X l

f−1
l (y(pn))

>
Xk

f−1
k (y(pn))

and this implies that: ∃l : Zl(p
n) > Zk(p

n).
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Theorem 1. A buffer equilibrium exists in the p2p exchange economy, given that users’ preferences
are continuous and strictly convex, monotone w.r.t. service products as well as strongly monotone
w.r.t. to supply resources.

Proof. Consider the relative buffer function Z(p). We have noted in Observation 1 that X(p) and
y(p) are both homogeneous of degree zero, and this implies that Z(p) is homogeneous of degree zero.
Thus, we can normalize prices in such a way that all prices sum up to 1. More precisely, denote by

∆ =

{
p ∈ RL

+ :
∑
l

pl = 1

}
.

We can restrict our search for an equilibrium to price vectors in ∆. However, the function Z(p) is
only well-defined for price vectors in

Interior ∆ = {p ∈ ∆ : pl > 0 for all l} .

To refer to price vectors in ∆ that are not in the interior, we use:

Boundary ∆ = ∆ \ Interior ∆.

The proof proceeds in six steps. In the first two steps, we define a correspondence f(·) from ∆
to ∆, where we distinguish between price vectors in Interior ∆ and in Boundary ∆. In step 3, we
show that the correspondence is convex-valued. In step 4, we show that the correspondence is upper
hemicontinuous. In step 5, we use all of these results and apply Kakutani’s fixed point theorem to
conclude that a p∗ with p∗ ∈ f(p∗) is guaranteed to exist. Finally, in step 6 we show that any fixed
point constitutes an equilibrium price vector. To facilitate notation, we will use q to denote price
vectors in the set f(p) ⊂ ∆.

Step 1: Construction of the correspondence f(·) for p ∈ Interior ∆. For the definition of this
correspondence, we put the resources in an arbitrary but fixed order, and index them by i, j ∈ {1, 2, 3}:

∀p ∈ Interior ∆ : f(p) =

{
q ∈ ∆, if Z(p) = 0

q ∈ ∆ : qi = 1 if i = argmin {pj : pj = min {p1, p2, p3}} , if Z(p) ̸= 0

In words, if Z(p) = 0, i.e., when the buffer is the same for all resources, then the correspondence
f(·) maps p to the set of all price vectors in ∆. If Z(p) ̸= 0, then the correspondence maps p to a
price vector q ∈ ∆ where one component of q equals 1 and the other two components are equal to 0.
More specifically, the correspondence sets that component qi = 1 for which i is the smallest index of
the price components pj that are minimal among p1, p2 and p3. Thus, when Z(p) ̸= 0, then f(·) maps
p to exactly one q ∈ Boundary ∆. Only if Z(p) = 0, then f(p) = ∆.

Step 2: Construction of the correspondence f(·) for p ∈ Boundary ∆.

∀p ∈ Boundary ∆ : f(p) = {q ∈ ∆ : qi = 0 if pi > 0}

This correspondence maps p to all price vectors q ∈ ∆ for which a component of q equals 0 when
the corresponding component of p is positive. Because p ∈ Boundary ∆, we know that for some i,
pi = 0, and thus f(p) ̸= ∅. Furthermore, for at least one i, pi > 0 and thus qi = 0, which implies that
no point from Boundary ∆ can be a fixed point.
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Step 3: The fixed-point correspondence is convex-valued. Consider first p ∈ Interior ∆. If Z(p) = 0,
then f(p) = ∆, and because ∆ is a simplex it is obviously convex. When p ∈ Interior ∆ and Z(p) ̸= 0,
then f(·) maps p to exactly one point in ∆, and thus f(p) is trivially convex. Now, if p ∈ Boundary ∆,
then f(p) is a subset of ∆, namely the set of price vectors q where one or two dimensions are equal
to 0. These subsets of ∆ are themselves simplices, and thus convex, and consequently f(p) is convex.

Step 4: The correspondence f(·) is upper hemicontinous. To show upper hemicontinuity we have to
prove that for any sequence pn → p and qn → q with qn ∈ f(pn) it holds that q ∈ f(p). We distinguish
two cases: p ∈ Interior ∆ and p ∈ Boundary ∆.

Step 4a: p ∈ Interior ∆. Consider first a sequence pn → p with Z(p) = 0. Thus, f(p) = ∆
and for any sequence qn → q, it is trivially true that q ∈ f(p). Now consider a sequence pn → p
with Z(p) ̸= 0. Because users’ preferences are continuous (Assumption 1), we know that X(p) and
y(p) are continuous, which implies the continuity of Z(·), and thus limn→∞ Z(pn) = Z(p). Because
Z(p) ̸= 0, for n large enough it must be that Z(pn) ̸= 0. Thus, when considering the sequence
pn → p, for n large enough, we only have to consider the second case of the definition of f(·).
Let i∗ = argmin {pj : pj = min {p1, p2, p3}}. It holds that limn→∞min{pn1 , pn2 , pn3} = min{p1, p2, p3}.
Thus, for n large enough, it must be that argmin

{
pnj : pnj = min {pn1 , pn2 , pn3}

}
= i∗. Consequently,

for n large enough, if qn ∈ f(pn), then qni∗ = 1 which implies that qi∗ = 1. Thus, if qn → q and for all
n qn ∈ f(pn), then q ∈ f(p).

Step 4b: p ∈ Boundary ∆. Consider pn → p and qn → q with qn ∈ f(pn) for all n. We show that
for any pl > 0, for n sufficiently large we have qnl = 0 and thus ql = 0 which implies that q ∈ f(p). If
pl > 0, then pnl > 0 for n sufficiently large. If pn ∈ Boundary ∆, then qnl = 0 by the definition of the
correspondence f(pn), and thus ql = 0. If, however, pn ∈ Interior ∆, then Lemma 2 comes into play.
Because p ∈ Boundary ∆, for at least one k we have pk = 0 and thus pnk → 0. According to Lemma
2, for n large enough:

∃l : Zl(p
n) > Zk(p

n)

i.e., there exists a resource l which has a larger buffer than resource k. Thus, Zk(p
n) ̸= Zl(p

n) and
thus Z(pn) ̸= 0, which implies that we must only consider the second case of the definition of f(pn)
for pn ∈ Interior ∆. If qn ∈ f(pn), then for n large enough qnk = 1 for a resource k for which pnk → 0.
Because p ∈ Boundary ∆, at least one and at most two components of pn go towards 0. However,
because qn → q, for n large enough, qnk = 1 for the same resource k, and thus qk = 1, which implies
that ql = qm = 0. Thus, for any pl > 0, ql = 0, which implies that q ∈ f(p).

Step 5: A fixed point exists. The set ∆ is a non-empty, convex and compact set and we have
shown that f(·) is a correspondence from ∆ to ∆ that is convex-valued and upper hemicontinuous.
Thus, we can apply Kakutani’s fixed-point theorem which says that any convex-valued and upper
hemicontinuous correspondence from a non-empty, compact and convex set into itself has a fixed
point. We conclude that there exists a p∗ ∈ ∆ with p∗ ∈ f(p∗).

Step 6: A fixed point of f(·) is an equilibrium. Assume that p∗ is a fixed point, i.e., p∗ ∈ f(p∗). As
we have pointed out in step 2, no price vector from Boundary ∆ can be a fixed point. Thus, it must
be that p∗ ∈ Interior ∆. In step 1, we already saw that when Z(p∗) ̸= 0, then f(p∗) ⊂ Boundary ∆,
which is incompatible with p∗ ∈ Interior ∆ and p∗ ∈ f(p∗). Thus, for p∗ to be a fixed point, it must
hold that Z(p∗) = 0, and thus any fixed point p∗ is an equilibrium price vector.
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To summarize, we have shown that a fixed point always exists and that any fixed point is an equi-
librium price vector. Thus, given the assumptions of the theorem, a buffer equilibrium is guaranteed
to exist.

5.3. Equilibrium Existence with Price-insensitive or Adversarial Users

So far, we have shown the existence of the buffer equilibrium when all users’ preferences satisfy
continuity, strict convexity, monotonicity and strong monotonicity w.r.t. supply resources, and update
their settings accordingly upon price changes. In practice, however, some users might violate these
assumptions, for example, because they don’t notice price changes, or because they don’t care enough
to update their settings immediately. In more extreme cases, some users might purposefully harm the
system and try to bring it out of equilibrium by updating their settings in the opposite way than what
our assumptions would suggest. We call such users adversarial users. For example, an adversarial
user could maximize his supply of those resources that currently have a very low price, and minimize
his supply of those resources that currently have a very high price. Even though such behavior would
certainly hurt the attacking user himself and thus could be called irrational, adversarial users do exist
in practice, and robustness against adversarial attacks is a common concern.

In this section, we prove that a buffer equilibrium exists, even if a certain percentage of the user
population is adversarial. For the analysis, we distinguish between rational users whose preferences
satisfy our assumptions as before, and who update their settings accordingly upon price changes,
and adversarial users, whose preferences must not satisfy our assumptions. To derive the maximum
percentage of adversarial users that we can tolerate, the following analysis assumes that adversarial
users update their settings in such a way as to maximally hurt the system, to bring it out of equilibrium.

We let R denote the set of rational users, and A denote the set of adversarial users. We let Y R and
XR denote the demand and supply vector of the rational users, and Y A and XA denote the demand
and supply vector of the adversarial users. Thus, Y = Y R + Y A and X = XR +XA. As before, we
let γ > 1 denote the system’s slack constraint. We assume that the maximum demand of the rational
users is at least C times larger than the maximum demand of the adversarial users, i.e., Y R ≥ C ·Y A,
and we derive a minimum bound for C to guarantee the existence of a buffer equilibrium.

As a first step, we show that under certain conditions, when the price of a resource k goes towards
zero, there exists a resource l ̸= k with a strictly larger resource buffer than k (proof provided in the
Appendix, in Section B).

Lemma 3. Given slack factor γ and given that Y R ≥ C · Y A, if rational users’ preferences are
continuous and strictly convex, monotone w.r.t. service products as well as strongly monotone w.r.t.
supply resources, and if C > (γ2 + γ), then for pn → p with p ̸= 0 and pk = 0, for n sufficiently large:

∃l : Xk(pn)

f−1
k (y(pn))

<
Xl(pn)

f−1
l (y(pn))

.

Equipped with Lemma 3, it is straightforward to prove the more general Theorem about equilibrium
existence with adversarial users.

Theorem 2. Given slack factor γ and given that Y R ≥ C ·Y A, then a buffer equilibrium exists in the
p2p exchange economy if C > (γ2 + γ) and the rational users’ preferences are continuous and strictly
convex, monotone w.r.t. service products as well as strongly monotone w.r.t. to supply resources.
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Proof. The theorem follows from the same proof as Theorem 1. The only necessary change is that in
step 4b of the proof, instead of using Lemma 2 (which is only applicable when all users are rational),
we use the more general Lemma 3.

What Theorem 2 shows is that the more freedom we give the users in setting their supply (i.e.,
the larger the slack factor), the less robust is the system against adversarial attacks. This result is
actually very relevant and useful for the designer of the p2p backup market. If there is reason to
believe that a non-negligible fraction of the population will be adversarial or that many users will not
update their prices in a rational way, then Theorem 2 tells the market designer exactly what to do.
For example, if the market designer believes that at most 10% of the users will be adversarial, then
the formula from the theorem tells us that as long as we give the users a slack factor of 2.5 or less, a
buffer equilibrium is guaranteed to exist. In that respect, the theoretical equilibrium analysis actually
has a very direct practical impact on the market design.

5.4. Equilibrium Uniqueness

Without any further restrictions on users’ preferences, we cannot say anything about the uniqueness
of the buffer equilibrium, because the substitution effect and the wealth effect could either go in the
same or in opposite directions.11 The standard equilibrium uniqueness proof for Walrasian equilibria
resolves this by assuming that the aggregate excess demand function has the gross substitutes property
for all commodities [1], which means that a price increase for one commodity causes an increase in the
aggregate excess demand for all other commodities. However, that assumption is too strong for our
domain for two reasons. First, and most importantly, for the demanded services, the gross substitutes
property is violated in a p2p backup system. For example, if the price for storage increases, it is
not reasonable to assume that users will now start deleting their backed up files and consume more
backup or retrieval operations instead. The reason is simple: every file you back up is then being
stored, and you can only retrieve files you have previously backed up. Thus, there are in fact strong
complementarities between the demanded services in our domain, and to reflect this, we make the
following assumption:

Assumption 5. (Services are Perfect Complements) We assume that the aggregate demand function
Y (·) has the perfect complements property, i.e.:

∀p, p′ ∈ R3
>0 : ∃µ ∈ R s.t. Y (p) = µ · Y (p′)

A consequence of the perfect complements property is that price changes affect all dimensions of the
aggregate demand vector equally. For an individual user, the Leontief utility function would induce
the perfect complements property such that resources are consumed in fixed ratios. However, it bears
emphasis that we assume perfect complements only for aggregate demand, rather than for individual
demand, which is a much weaker assumption, and more reasonable due to the law of large numbers.

In contrast to service products, it seems reasonable to assume that supplied resources are substitutes
in the sense that a user is happy to shift his supply from one resource to another as prices change. Yet,
the strong assumption that supplied resources are gross substitutes might also not hold in our domain.
Because services have the perfect complements property, and because services and supplied resources

11In an exchange economy, a price change always has two effects: first, it changes the relative prices between the goods,
causing the substitution effect. Second, it can also change a user’s wealth, because his supply might now be more
or less valuable, which is called the wealth effect. Without further assumptions, nothing can be said about the net
effect of a price change (cf. Sonnenschein-Mantel-Debreu Theorem, [17], pp. 598-606).
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are coupled via the flow constraint Xi · p = f−1(Y ) · p, price changes can also have non-substitution
effects on the supply of resources. For example, when the price for a resource is decreased, it is not a
priori clear that the supply for that resource goes down. It might be, that due to this price decrease,
the system just became much more attractive for many users, so that they significantly increase their
demand and thus also their supply (of all resources). Thus, we don’t want to make assumptions
regarding the specific directions of change in the supply and demand functions. We only make an
assumption regarding how price changes affect the relative ratios of supplied resources to each other:

Assumption 6. (Relative Supply Resources are Gross Substitutes) We assume that the aggregate
supply function X(p) has the relative gross substitutes property, i.e., whenever p′ and p are such that,

for some k, p′k > pk and p′l = pl for l ̸= k, we have Xk(p
′)

Xl(p′)
> Xk(p)

Xl(p)
.

Note that both assumptions are relatively weak. Upon a price decrease for good k, the aggregate
supply for k can go up or down, and the demand for all services can also go up or down. All we
assume is that when the price for good k is decreased, the relative supply of good k to the other goods
decreases, and the demand for services moves up or down proportionally. With these two assumptions,
we can now prove that the buffer equilibrium is unique:

Theorem 3. The buffer equilibrium is unique, given that the aggregate demand function satisfies
the perfect complements property (Assumption 5), and that the aggregate supply function satisfies the
relative gross substitute property (Assumption 6).

Proof. Because we make different assumptions regarding the supply and demand sides of our economy,
we first separate the supply and demand aspects by introducing an alternative description of the buffer
equilibrium:

X = f−1(Y ) (11)

⇔
(
XS , XU , XD

)
=

(
f−1
S

(Y ), f−1
U

(Y ), f−1
D

(Y )
)

(12)

⇔
(
1,

XU

XS

,
XD

XS

)
=

(
1,

f−1
U

(Y )

f−1
S

(Y )
,
f−1
D

(Y )

f−1
S

(Y )

)
(13)

⇔
(XU

XS

,
XD

XS

)
−

(f−1
U

(Y )

f−1
S

(Y )
,
f−1
D

(Y )

f−1
S

(Y )

)
= 0 (14)

We define a new vector-valued function g(p) =
(
gU (p), gD(p)

)
:

gU (p) =
(XU

XS

−
f−1
U

(Y )

f−1
S

(Y )

)
and gD(p) =

(XD

XS

−
f−1
D

(Y )

f−1
S

(Y )

)
,

which naturally leads to a new equilibrium definition that is equivalent to Definitions 3 and 4:

Definition 5. (Buffer Equilibrium [Version 3]) A buffer equilibrium is a price vector p and g(p) such
that

g(p) =

(
0
0

)
.

We have simplified the problem of finding equilibrium prices to finding the root of the function
g(p). Because X(p) and Y (p) are homogeneous of degree zero, g(p) is also homogeneous of degree
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zero, which implies that collinear price vectors are equivalent, i.e., ∀λ > 0 : g(p) = g(λ · p). Thus,
showing uniqueness of the buffer equilibrium is now equivalent to showing that g(p) = 0 has at most
one normalized solution. Now, let’s assume that g(p) = 0, i.e., p is an equilibrium price vector. We
show that for any p′, g(p′) ̸= 0 unless p and p′ are collinear. Because of Assumption 5 (the aggregate
demand function has the perfect complements property), a price change affects all dimensions of
the demand function equally, i.e., ∃µ ∈ R : Y (p) = µ · Y (p′). Because the production function is
bijective and exhibits constant returns to scale, this implies that f−1(Y (p)) = µ · f−1(Y (p′)). Thus,

∀p, p′ ∈ R3
>0 :

f−1

U
(Y (p))

f−1

S
(Y (p))

=
f−1

U
(Y (p′))

f−1

S
(Y (p′))

, i.e., changes in the demand function Y (·) due to price changes

do not affect g(·). Consequently, we only have to consider changes in the supply function X(·). Now
consider a price vector p′ that is not collinear with p. Because of the homogeneity of degree zero, we
can assume that p′ ≥ p and pl = p′l for some l. We now alter the price vector p′ to obtain a price
vector that is collinear to p, and argue about how g(·) changes in the process. We distinguish between
three cases:

Case 1: l = S, i.e., p′
S
= pS . First, we generate a price vector p′′ that is collinear to p, by linearly

increasing all components of p until the next two price components are equal, i.e., p′′k = p′k for k ̸= S.

We assume that k = D (the case where k = U is completely symmetric) such that:

p′
U
≥ p′′

U
(15)

p′
D

= p′′
D

(16)

p′
S
≤ p′′

S
(17)

with at least one of the inequalities being strict. Now we alter p′ to obtain p′′ in two steps. In the
first step, we decrease (or keep unaltered) p′

U
until it equals p′′

U
. In the second step, we increase (or

keep unaltered) p′
S
until it equals p′′

S
. Because p′ and p′′ were not collinear, we have changed the price

vector in at least one step, and because of Assumption 6, the relative ratio between XU and XS has
decreased in at least one step and has never increased, such that:

XU (p
′)

XS(p
′)

>
XU (p

′′)

XS(p
′′)

=
XU (p)

XS(p)

Thus, the first term in gU (·) has changed, and the second term stayed constant, and g(p′) ̸= g(p) = 0.

Case 2: l = U , i.e., p′
U
= pU . First, we generate a price vector p′′ that is collinear to p, by linearly

increasing all components of p until p′′k = p′k for k ̸= U . Now we differentiate between two cases:

Case 2a: k = D such that:

p′
S
≥ p′′

S
(18)

p′
D

= p′′
D

(19)

p′
U
≤ p′′

U
(20)

with at least one of the inequalities being strict. The remainder of the proof for this case is analogous
to the one fore case 1.

Case 2b: k = S such that:

p′
D

≥ p′′
D

(21)

p′
S
= p′′

S
(22)

p′
U
≤ p′′

U
(23)
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with at least one of the inequalities being strict. Analogously to the proof for case 1, we can show
that

XU (p
′)

XD(p
′)

<
XU (p

′′)

XD(p
′′)

=
XU (p)

XD(p)
(24)

For the rest of the proof for this case, we construct a contradiction. Assume that p′ is also an
equilibrium price vector such that g(p′) = 0. Because the second term in gU and gD respectively does
not change upon price changes, this implies that:

XU (p
′)

XS(p
′)

=
XU (p)

XS(p)
(25)

and
XD(p

′)

XS(p
′)

=
XD(p)

XS(p)
(26)

From Equation (25) it follows that XU (p
′) =

XU (p)

XS(p)
·XS(p

′) and from (26) it follows that XD(p
′) =

XD(p)

XS(p)
·XS(p

′). If we put these two results together we get:

XU (p
′)

XD(p
′)

=
XU (p) ·XS(p

′) ·XS(p)

XS(p) ·XD(p) ·XS(p
′)

=
XU (p)

XD(p)

and this contradicts Equation (24). Thus, g(p′) ̸= 0.

Case 3: l = D, i.e., p′
D
= pD. The proof for this case is analogous to the proof for case 2.

In summary, in all three cases we established that g(p′) ̸= g(p) = 0 which shows that p′ is not an
equilibrium price vector and concludes the equilibrium uniqueness proof.

5.5. (Un-)Controllability of the Supply-Side Buffer

So far we have shown under what conditions the buffer equilibrium exists and when it is unique.
In practice, however, the system will be out of equilibrium most of the time, because users do not
continuously adjust their settings, and thus price changes will only affect supply and demand after a
delay. This is why in Section 5.1, we have motivated the buffer equilibrium as a desirable target: the
buffer between current demand and maximum supply of resources gives the system a certain safety
for when it is out of equilibrium. To make sure we can always satisfy new incoming demand, we might
like to have at least 25% more supply than current demand, i.e., X ≥ 1.25 · f−1(y). Unfortunately,
the uniqueness of the buffer equilibrium (Theorem 3) has an immediate consequence regarding the
limited controllability of the buffer equilibrium:

Corollary 1. (Limited Controllability of the Market) Given Assumptions 5 and 6, the market operator
cannot influence the size of the buffer in the buffer equilibrium by adjusting market prices.

It turns out that the limited controllability of the buffer equilibrium remains, even without the
assumptions that service are perfect complements and that relative supply resources are gross substi-
tutes, thereby strengthening the result from Corollary 1:

Proposition 3. If each individual user i has a limited planning horizon in that he chooses not to
give himself more than a demand-side buffer of λi, then there exists a Λ ∈ R>1 such that the market
operator cannot achieve a buffer equilibrium with buffer size Λ by adjusting market prices.
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Proof. For the proof we construct a simple counterexample. We choose a Λ such that ∀i : Λ > λi.
And we let λ∗

i = maxi λi. Now:

∀i : Yi = λi · yi (27)

⇒ Y =
∑
i

λi · yi (28)

⇒ Y ≤
∑
i

λ∗
i · yi (29)

⇒ Y ≤ λ∗
i

∑
i

·yi (30)

⇒ Y ≤ λ∗
i y (31)

⇒ f−1(y) ≤ λ∗
i f

−1(y) (32)

⇒ X ≤ λ∗
i f

−1(y) (33)

Thus, the buffer between supply and demand would be less or equal to λ∗
i which by assumption was

strictly less than the buffer Λ that the market operator desired.

Given the limited controllability of the buffer, it is natural to ask what buffer size to expect in
equilibrium. It turns out that, in equilibrium, the supply-side buffer is uniquely determined via the
demand-side buffer:

Proposition 4. In the buffer equilibrium, the size of the supply-side buffer equals the size of the
demand-side buffer.

Proof.

X = f−1(Y ) (34)

⇔ X = f−1(λ · y) (35)

⇔ X = λ · f−1(y) (36)

Equation (35) follows because of Assumption 3 (linear prediction for aggregate demand). Equation
(36) follows from System Properties 3 and 4 (production functions are bijective and exhibit CRTS).

In words, the size of the buffer depends on how forward-looking the users are. If on average the
users give themselves a 25% buffer on the demand side (e.g., a user has currently backed up 20GB and
sets the sliders in such a position that his maximum online backup space is 25GB), then the system
would also have a 25% buffer on the supply side, i.e., X = 1.25 · f−1(y).

Even though the market operator cannot influence the size of the overall supply-side buffer by
adjusting market prices, Proposition 4 provides us with a different, yet very natural way to achieve
any desired buffer. The market operator simply needs to insist that every user gives himself a certain
minimum demand-side buffer. One way to achieve this is to build this requirement into the user
interface, i.e., given user i’s current demand yi there would be a minimum demand Yi = λi · yi below
which the user could not go:

Proposition 5. If the market operator can enforce any demand-side buffer for individual users, then
he can achieve any desired supply-side buffer size Λ > 1 in the buffer equilibrium.
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Proof. We let the market operator set all individual user’s minimum required demand-side buffers to
λi = Λ. Then we know from Proposition 4 that the resulting aggregate supply-side buffer will also be
at least Λ.

Note that enforcing a demand-side buffer of Λ for every individual user can result in efficiency
losses. A user who, without this restriction, would have chosen a smaller demand-side buffer, now
loses some utility. For example, he might now choose a smaller Yi to avoid having to give up as many
resources Xi. Thus, in practice, the desired supply-side buffer Λ would have to be carefully chosen,
trading-off a larger supply-side buffer on the one hand, with some efficiency losses for individual users
on the other hand.

6. The Price Update Algorithm

In this section we propose and analyze a price update algorithm that is invoked regularly on the
server (e.g., once a day), with the goal to move prices towards the buffer equilibrium over time.
Our algorithm is oriented at the tâtonnement process as defined by Walras [24]. However, Walras’
algorithm only allowed trades at equilibrium prices. In our system, however, we must allow trades at
all times, even out of equilibrium.

6.1. The Algorithm

Because users’ preferences are homogeneous of degree zero, collinear price vectors are equivalent.
Thus, instead of searching for the equilibrium price vector in R3, we can simplify the task by looking
at projective space RP2:

RP2 :=
{
(pS , pU , pD) ∈ R3 \ {0} : (pS , pU , pD) ∼ λ(pS , pU , pD) ∀λ ∈ R+

}
Thus, we can fix the price of an arbitrary good (the numeraire) and normalize the price vector

accordingly. Here, we normalize the price of storage space to 1:

p = (pS , pU , pD) ∼ (1,
pU
pS

,
pD
pS

)

In Section 5.4, we have reduced the problem of finding the buffer equilibrium to finding the root of
the function g(p) =

(
gU (p), gD(p)

)
where

gU (p) =
(XU

XS

−
f−1

U
(Y )

f−1

S
(Y )

)
and gD(p) =

(XD

XS

−
f−1

D
(Y )

f−1

S
(Y )

)
.

This formulation of the buffer equilibrium is also useful for the price update algorithm, because
finding the root of a function is a well-understood mathematical problem. Newton’s method is probably
the best-known root-finding algorithm and converges quickly in practice. However, it requires the
evaluation of the function’s derivative at each step. Unfortunately, we don’t know the function g(·)
and thus cannot compute its derivative. Instead, we only get to know individual points in each
iteration and can use these points to estimate the derivative. This is exactly what the secant method
does for a one-dimensional function.

The problem is that g(p) is 2-dimensional, and thus the secant method is not directly applicable.
The appropriate multi-dimensional generalization is Broyden’s method [4], a quasi-Newton method.
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Unfortunately, that method requires knowledge of the Jacobian, which we don’t know and also cannot
even measure approximately. However, we show that one can use an approximation to the diagonal
sub-matrix of the Jacobian instead of the full Jacobian matrix. The diagonal sub-matrix of the
Jacobian can be approximated by studying changes in the function g(p). This leads to the following
quasi-Newton method for multiple dimensions:

Definition 6. (The Price Update Algorithm)

pt+1
l =

{
1 for l = S

ptl −
ptl−pt−1

l
gl(pt)−gl(pt−1)

· gl(pt) for l = U,D

For the implementation of the price update algorithm in our system we took care of a few special
cases (e.g., exactly reaching the equilibrium such that terms cancel out), but we omit the details here.

6.2. Theoretical Convergence Analysis

We begin with the analysis of the convergence of the following iteration rule:

x(k+1) = x(k) −D(x(k))−1F (x(k)) (37)

where F is a function F : Rn → Rn and D is the diagonal sub-matrix of the Jacobian J of F . We
define the matrix L by the rule J(x) = D(x) + L(x), i.e., L comprises of the off-diagonal partial
derivatives in the Jacobian. For this iteration rule, the following theorem holds (the proof is provided
in the Appendix, in Section D):

Theorem 4. Let F be a continuously differentiable function. Suppose that in the iteration rule given
by equation (37), x(0) is chosen close enough to a root x∗ of F , J(x∗) is non-singular, J and D are
Lipschitz continuous, and L(x∗) = 0. Then the successive iterations x(k) produced by the iteration rule
converge to x∗, and the rate of convergence is at least Q-linear.12

The problem one faces when trying to apply the secant method to higher dimensions is that the
system of equations provided by Jk · (x(k) − x(k−1)) ≃ F (x(k)) − F (x(k−1)) (where Jk is the current
estimate of the Jacobian) is under determined. However, if one uses the diagonal approximation to the
Jacobian, then the system is fully determined. What Theorem 4 says is that under certain conditions,
using the diagonal sub-matrix of the Jacobian instead of the full Jacobian in the given iteration rule,
still leads to convergence to a root of the function.

Equipped with Theorem 4, it is now easy to prove that the price update algorithm given in Definition
6 converges to a buffer equilibrium. We only need to consider the update algorithm for resource prices
pU and pD because the price for space remains constant at 1. Consider the function g(·), and as
before, J is the Jacobian of g(·), D is the diagonal sub-matrix of J , and L is defined by the rule
J(x) = D(x) + L(x).

12Q-linear convergence means that limk→∞
∥x(k+1)−x∗∥
∥x(k)−x∗∥q = µ with µ ∈ (0, 1) and q = 1. We can in fact prove that

the iteration rule exhibits faster than Q-linear convergence: just like Broyden’s method, its convergence is locally
Q-superlinear (with q ≈ 1.62, and µ > 0). However, showing this result requires a more intricate argument which is
beyond the scope of this paper.
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Corollary 2. Consider the price update algorithm given in Definition 6. If g(·) is a continuously
differentiable function, p(0) is chosen close enough to a root p∗ of g(·), the Jacobian J(p∗) is non-
singular, J and D are Lipschitz continuous, and L(p∗) = 0, then the price update algorithm converges
to an equilibrium price vector p∗, and the rate of convergence is at least Q-linear.

Proof. We have shown in Section 5.4 that if we find a price vector p∗ such that g(p∗) = 0, then we have
reached a buffer equilibrium. Thus, we only have to show that the price update algorithm converges to
a root of the function g(·). Now, note that the price update algorithm provided in Definition 6 defines
a quasi-Newton iteration rule that uses the diagonal sub-matrix of the Jacobian of the function g(·),
equivalent to the iteration rule given in equation (37). By Theorem 4, that iteration rule converges
locally to a root of g(·), and the rate of convergence is at least Q-linear.13

7. Usability Study

In this section, we describe some of the results from a formative usability study of our system with
16 users.14 Our main goal in the usability study was to understand whether the market user interface
we propose for the p2p backup system is a usable instantiation of the hidden market paradigm. For
details on the study set-up, please see Section C in the Appendix.

7.1. Methodology

The purpose of the usability study was to evaluate how users understand the hidden market UI, which
mental models are invoked and whether users can successfully interact with the market. Note that
during the study, the users interacted with the real p2p backup client software that was connected via
TCP to the p2p server application and to 100 other simulated clients. We started the users off with
two warm-up tasks. First, they had to perform one backup using the software. Second, they had to
open the settings window and answer a series of questions regarding the information they saw.

Upon completion of the warm-up phase, we gave the study participants 11 tasks, each consisting
of a user scenario with hypothetical preferences, and a description of the goal setting for that user.
We chose tasks with varying complexity and we also tested different mental models in different tasks.
For example, Scenario 1 was the most simple one, asking the user to “change the settings such that
you have approximately 15 GB of free online backup space available.” In contrast, Scenario 11 was
rather complex, asking the user to “imagine you are a user who likes to download videos and store
them on your computer for a while. Assume that you need 20 GB of your own hard disk space to
store the videos, and obviously you need lots of download bandwidth, but you do not care too much
about upload bandwidth. Please change your settings so that you have approximately 25 GB of free
online backup space available while taking the other constraints into account.”

13One might wonder how restrictive the conditions of Theorem 4 and Corollary 2 are. The condition that the matrices J
and D be Lipschitz continuous puts upper bounds on how fast the partial derivatives of the function can change. One
can relax this assumption to just that of J and D being Lipschitz continuous in a neighborhood of the root without
affecting the conclusions of the theorem and corollary. Local Lipschitz continuity near the neighborhood of the root
seems like a plausible condition for g(·) to satisfy because it is hard to envision wild changes in the function near an
equilibrium point. The non-singularity of J(p∗) means that our function does not have a higher order zero at the
equilibrium point. It is likely that our algorithm would still converge even if this assumption fails, but we do not have
a proof of this. The local convergence of our method is an aspect we share with all Newton’s methods operating in
multiple dimensions, and this is the most worrisome property as well as the hardest to get a handle on. If ∥J(p∗)−1∥
and Lipschitz constants of J and D around p∗ are all small, then the basin of convergence is large. However, it seems
that only experimental evidence can validate whether this assumption is reasonable in our situation.

14See [21] for the full study.
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We asked the users to “think out loud” as they performed each task and we made detailed obser-
vations during the tasks. Using the 11 tasks, we tested four different mental models, i.e., aspects of
the user’s understanding of the market:

1. Give & Take: The users understand they must give some of their resources (on the right side)
and get a proportional amount of online backup space in return (on the left side). This was
tested using tasks 1 and 2. The test was deemed successful if the users adjusted all settings
correctly.

2. Bundling: The users understand the bundle constraints, i.e., that they cannot provide zero of
any resource because only resource bundles have value. This was tested using tasks 3 and 4.
The test was deemed successful if the users adjusted all settings correctly.

3. Prices: The users understand that different resources can have different “prices” at different
points in time. This was tested using tasks 7, 8, and 9. The test was deemed successful if the
users adjusted the settings for task 9 correctly (tasks 7 and 8 gave them practice to learn the
model and discover the pricing aspect).

4. Bundling (Learned): The users understand the bundle constraints after exploring the UI for
a while, i.e., after a certain learning period. This was tested using tasks 10 and 11. The test
was deemed successful if the users adjusted all settings correctly.

Note that the tasks were set-up such that finding the correct setting by coincidence was unlikely.
The correct setting was not a natural focal point so that the user researcher could easily decide whether
the participant had truly understood the task (and thus the right mental model had been activated)
or not. Of course, the “think out loud” method also helped determining the result of a test. For
example, when testing the understanding of the bundle constraints, if a user said something like “I
see, I obviously cannot give 5GB of space without giving any bandwidth, thus I choose to supply the
minimum amount of bandwidth I have to give,” then this counted as sufficient understanding of the
bundle constraints. The rare cases where a user had coincidentally chosen the correct settings but did
not display sufficient understanding of the problem were also deemed to be failures in our experiment.

7.2. Results

Table 2 summarizes the results from the usability study, evaluating whether the 4 different mental
models have been successfully activated or not. It turns out that the basic aspects of the UI were
understood by all users (1: Give & Take). However, the first time the users faced a combinatorial
task, e.g., “minimize your upload bandwidth while maintaining at least 15 GB of free online backup
space”, only 9 out of 16 users completely understood the problem and found the optimal settings. The
understanding of the bundle constraints of the market improved towards the end of the study, showing
that a certain learning effect had occurred. In particular, 2 of the users that had not understood the
bundle constraints at the beginning, understood them well at the end of the study, leading to 11/16
successful outcomes for “Bundling (Learned)”.

The most difficult tasks for the users were certainly the ones testing their understanding of prices
because this required three steps from them: first, discovering that different resources had different
prices, second, understanding the implication for their supply of resources, and then third, choosing
the optimal supply settings for themselves given current prices. Only 7 out of 16 users successfully
completed all three steps, and thus were deemed to understand the pricing aspect.

One immediate finding is that the performance of the users is uncorrelated with the way we had
segmented them into experts or novices in advance (see Table 2). Thus, prior experience with p2p
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Category Mental Model Experts Novices Total

1 Give & Take 8/8 8/8 16/16

2 Bundling 4/8 5/8 9/16

3 Prices 5/8 2/8 7/16

4 Bundling (Learned) 5/8 6/8 11/16

Table 2: Results from the Usability Study: Number of Users Falling into Comprehension Categories

file-sharing software did not seem matter. Instead, anecdotal evidence suggests that those users whose
jobs or education involved some mathematical modeling seemed to understand the concepts underlying
the UI faster. This makes sense, given that some of the tasks were relatively complex and required a
good, somewhat analytical understanding of the UI. However, a factor that is difficult to measure but
seemed to play an important role in this study is the users’ curiosity, i.e., how much the users liked
to play with the sliders until they figured out how the interface worked. This aspect is particularly
important for category 4, i.e., the pricing aspect. The less curious users who did not explore the
settings space as much as the others were also the ones that did not discover the fact that different
resources have different prices, and consequently failed to solve the pricing tasks optimally.

Upon completion of the interactive part of the study we asked the users about their experience
with the UI. Despite the fact that almost every user had difficulties with at least one of the tasks,
the user feedback was largely positive. Most users thought that the software made it easy to perform
the tasks they were given (with a 3.8 average on a 5-point Likert scale, with 1=strongly disagree and
5=strongly agree) and they indicated that they enjoyed using the UI (3.8 average on the same 5-point
Likert scale). Most users were pretty confident that they completed the tasks successfully (with an
average 4.0 on the same 5-point Likert scale). The users liked the graphical/visual representation of
the concepts involved. Despite some difficulties with solving the tasks, the users thought that the UI
was “clean, simple, intuitive and easy to use.” All users liked the ease of using the bar chart to choose
the desired amount of free online backup space. Furthermore, they liked that the UI gave immediate
feedback regarding the consequences of their choices. The users primarily disliked that it took them
a while to understand the concept and logic behind the sliders.

From the pre-study questionnaire we have seen that for a large number of users, p2p backup systems
could be an attractive alternative to server-based systems. However, this still leaves open the question
how users perceive the trade-off between a market-based system (that gives users more freedom in
choosing different combinations of supplied resources) vs. a non-market-based system (that has a
simpler UI). In the post-study questionnaire we asked the users twice to compare the two options.
The first time we asked the question, we gave no additional information beforehand. But before asking
them for the second time, we described a particular scenario highlighting the fact that the market-
based system gives the users more freedom in choosing the supplied resources. The results were that,
when asked for the first time, the users already slightly preferred the market-based system (3.3 on
a 5-point Likert scale, with 1=definitely prefer the simpler UI and 5=definitely prefer the complex
UI). After describing the hypothetical scenario where the non-market-based system would lead to a
degraded user experience, the average score rose to 4.0. We interpret these results as follows: a priori,
some users do not see the advantage of a market-based system. However, after understanding the
possible limitations of the non-market-based system, they realize the benefit of the increased freedom
in choosing what to supply, and they value this benefit higher than the disutility from the additional
complexity of the UI.
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8. Conclusion

In this paper, we have presented the design and analysis of a novel resource exchange market underlying
a p2p backup application. We have also used the p2p backup market as a first case study of a new
market design paradigm which we call hidden market design. We propose hidden markets for the
design of electronic systems in domains with many non-experts users and where markets might be
unnatural. To successfully hide the market complexities from the users in our system, new techniques
at the intersection of market design and user interface design were necessary. At all times, for the
model formulation and the theoretical analysis, our focus was on the actual implemented p2p backup
system, which we have successfully tested in alpha version.

In contrast to existing p2p backup systems, our design gives users the freedom to supply different
ratios of resources. This introduces the problem that without properly motivating the users to supply
those resources that are currently scarce, the system might not have enough supply to satisfy demand,
which motivates the use of a p2p resource market. While existing work on p2p data economies has
generally designed markets that balance supply and demand in equilibrium, our market is designed to
work well, even out of equilibrium. The users are not required to continuously update their supply and
demand. Instead, we provide a hidden market UI that lets them choose bounds on their maximum
supply in return for being allowed to consume a certain maximum amount of backup services. The UI
completely hides the users’ account balances and payments, and only indirectly exposes the current
market prices. A key contribution is the new slider control that we developed which we use to display
the bundles constraints to the users in an indirect way. The sliders also ensure that the users can only
choose supply settings that satisfy certain resource ratio constraints, which allows us to provide the
users a linear interaction with the system.

To maximize the safety of the system out of equilibrium, we have declared as our target to maximize
the overall size of the buffer between current demand and maximum supply. We have introduced the
buffer equilibrium concept and shown that, under certain assumptions, the size of the buffer is maximal
in the buffer equilibrium. The economic analysis of the market required the introduction of composite
resources on the supply side, and the careful study of the system’s production technology, to convert
the market into a pure exchange economy. In this model, we have proved that a buffer equilibrium
is always guaranteed to exist. This result also holds if a certain percentage of the user population is
price-insensitive or even adversarial. However, we have shown that the more freedom we give users
in choosing their supply settings, the less robust the system becomes against adversarial attacks.
We have explained how the theoretical equilibrium analysis actually has an important market design
implication. The theorem regarding adversarial users provides the market designer with a concrete
formula how large the system’s slack factor can be, given a certain belief about the maximal percentage
of adversarial users in the population.

To prove uniqueness of the buffer equilibrium, we needed two additional assumptions that are very
reasonable in our domain. We have explained why it makes sense to assume that services are perfect
complements, and how that affects even the supply of resources via the flow constraints. By making a
relatively weak assumption regarding how the relative supply of resources changes upon price changes,
we were able to prove uniqueness of the buffer equilibrium. An interesting corollary of the uniqueness
result was that the market operator has limited control over the size of the buffer via price updates
alone. However, we have shown how changes to the UI design can resolve this problem: by enforcing
certain demand-side buffers in the UI, the market operator can ensure any desired supply-side buffer.
We have proposed a price update algorithm that only requires daily aggregate supply and demand
information, and proved that it converges linearly to the buffer equilibrium, given that initial prices
are chosen close enough to equilibrium prices.
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To evaluate the hidden market UI, we have performed a formative usability study of our system.
Our main goal was to determine whether the UI activates the right mental model, and whether the
users can successfully interact with the hidden market. Overall, the results were encouraging and
show promise for the hidden market design paradigm. Most users intuitively understood the give &
take principle as well as the bundle constraints of the market. It was particularly positive to see that
even after the users had used he system for 45 minutes, they had not realized they were interacting
with a market-based system, yet were able to complete most of the tasks successfully. This shows that
we have successfully hidden the market. The pricing aspect, however, was difficult for some users, i.e.,
they either never learned that different resources have different values (prices) in the system, or they
were unable to exploit this insight properly. We are currently investigating new user interfaces that
still hide the market from the users, but provide them with slightly more information and guidance
regarding the pricing aspect.

In ongoing work we are also analyzing different ways to monetize the p2p market platform. There
is an easy and elegant way to generate revenue while still running the market using a virtual currency:
the market operator can charge a small tax on each virtual currency transaction and use the surplus to
sell backup services on a secondary market for real money. More specifically, the p2p users would not
have to be involved in any real-money transactions and the customers from the secondary market would
buy backup services like they would from a centralized data center. If real monetary transaction are
made possible and deemed desirable in the p2p system itself, then we can also open the whole market
for real monetary payments. On the one side, users will then be able to pay for their consumption of
services by either providing their own resources or by paying with real money, and on the other side,
users will then also be able to earn real money by supplying their resources. With this design, the
market operator could generate revenue by charging a tax on each virtual currency transaction and
by charging a tax on each real-money transaction.

We believe that the hidden market design presented in this paper has applicability beyond p2p
backup systems, and one such example could be smart grids, i.e., the next generation of electricity
networks. The main idea of smart grids is to expose the changing market price for electricity to the end
users, such that not only supply but also demand becomes price-elastic. Governments and industry
labs are currently making large research and development investments for smart grids [6], but it seems
that the user interface aspect of these systems is not getting enough attention. We argue that to
effectively involve the end-consumers of electricity in these new energy markets, a hidden market UI
will be necessary. In general, more and more market-based systems are currently emerging, often with
users who are mostly non-experts and might find the market paradigm unnatural in the particular
domain. We hope that the ideas we presented in this paper will inspire other researchers to develop
similar hidden market designs for novel applications in many other domains.
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Appendix

A. Proof of Lemma 1

Proof. We begin by showing the “⇒” direction:
If BS(p) = BU (p) = BD(p) then:

∃λ > 1 s.t. ∀l : X l(p) = λ · f−1
l (y(p))

Now, due to Assumption 3 we know that ∃δ : Y (p) = δ · y(p). Thus:

⇒ ∀l : X l(p) = λ · f−1
l (

1

δ
Y (p)) (38)

⇒ ∀l : X l(p) = λ · 1
δ
· f−1

l (Y (p)) (39)

⇒ ∀l : X l(p) = λ∗ · f−1
l (Y (p)) for λ∗ = λ · 1

δ
(40)

⇒ X(p) = λ∗ · f−1(Y (p)) (41)
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From the flow constraints (Eqn. 6) we also know that:

X(p) · p = f−1(Y (p)) · p (42)

Equations (41) and (42) can only both be true if λ∗ = 1. Thus, it follows that:

X(p) = f−1(Y (p)).

The “⇐” direction is even simpler to show:

X(p) = f−1(Y (p)) (43)

⇒ X(p) = f−1(λ · y(p)) (44)

⇒ X(p) = λ · f−1(y(p)) (45)

⇒ BS(p) = BU (p) = BD(p) (46)

Equation 44 follows because of Assumption 3 (Linear Prediction for Aggregate Demand). Equation
45 follows from System Properties 3 and 4 (Production functions satisfy CRTS and are bijective).

B. Proof of Lemma 3

Proof. We have shown in the proof for Lemma 2, that for pn → p with p ̸= 0 and pk = 0, for every
rational user i, for n large enough, at least one of the slack constraints will bind, i.e.:

∀i ∃l :
XR

ik(p
n)

f−1
k (y(pn))

=
1

γ

XR
il (p

n)

f−1
l (y(pn))

.

For the remainder of the proof, we will always consider the supply and demand functions for pn → p,
however, we will write X and y instead of X(pn) and y(pn) to simplify notation. It is possible, that
for each rational user, a different slack constraint binds. Let L and M denote the sets of rational users
for whom the slack constraints bind for resources l and m, respectively, i.e., R = L ∪M . We assume
that L and M are disjunct; if for some user, both slack constraints for l and m bind, we can place
that user randomly into either L or M . We let XL

l =
∑

i∈LXR
il and XM

l =
∑

i∈M XR
il . Then:

XL
l

f−1
l (y)

≥ XL
m

f−1
m (y)

and
XM

m

f−1
m (y)

≥
XM

l

f−1
l (y)

.

It is easy to see that at least for one of the resources l or m, the joint supply of that resource from
the corresponding set of users L or M must be at least half of the total supply of that resource from
the rational users. With out loss of generality, let l be such a resource. Thus:

XL
l

f−1
l (y)

≥ 1

2
·

XR
l

f−1
l (y)

.

Remember that for all users ∈ L, the slack constraint for l binds. For all other rational users, we
only know that they supply least of resource k. Thus:

γ ·
XL

k

f−1
k (y)

=
XL

l

f−1
l (y)

and
XM

k

f−1
k (y)

≤
XM

l

f−1
l (y)
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By adding both sides together we get:

γ ·
XL

k

f−1
k (y)

+
XM

k

f−1
k (y)

≤
XR

l

f−1
l (y)

Because XL
l +XM

l = XR
l , this is equivalent to:

(γ − 1) ·
XL

k

f−1
k (y)

+
XR

k

f−1
k (y)

≤
XR

l

f−1
l (y)

Because
XL

l

f−1
l (y)

≥ 1
2 · XR

l

f−1
l (y)

, this implies:

(
γ − 1

2

)
·

XR
k

f−1
k (y)

+
XR

k

f−1
k (y)

≤
XR

l

f−1
l (y)

⇒
(
γ + 1

2

)
·

XR
k

f−1
k (y)

≤
XR

l

f−1
l (y)

⇒
XR

k

f−1
k (y)

≤
( 2

γ + 1

)
·

XR
l

f−1
l (y)

.

So far, we have only argued about the rational users, and derived how much smaller the buffer for
resource k for these users must be relative to the maximum buffer for resource l or m. Now we turn
our attention to the adversarial users as well. Because Y R ≥ C ·Y A we know that XR · p ≥ C ·XA · p.
For large enough n, we know that pnk is close enough to 0 such that all income must come from supply
resources l and m. Thus:

XR
l · pl +XR

m · pm ≥ C ·
(
XA

l · pl +XA
m · pm

)
(47)

Because l was assumed to be the resource with the largest buffer for the rational users, we know that:

XR
m ≤ XR

l · f
−1
m (y)

f−1
l (y)

(48)

For the adversarial users, there is no restriction between the buffers for l and m, except the standard
slack constraint, i.e.:

XA
m ≥ 1

γ
·XA

l · f
−1
m (y)

f−1
l (y)

(49)

If we combine Equations 47, 48 and 49, then we get:

XR
l · pl +XR

l · f
−1
m (y)

f−1
l (y)

· pm ≥ C ·
(
XA

l · pl +
1

γ
·XA

l · f
−1
m (y)

f−1
l (y)

· pm
)

(50)

⇒ XR
l · pl +XR

l · f
−1
m (y)

f−1
l (y)

· pm ≥ C ·XA
l · pl +

C

γ
·XA

l · f
−1
m (y)

f−1
l (y)

· pm (51)
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For the last inequality to be true, a necessary condition is:

XR
l ≥ min{CXA

l ,
C

γ
XA

l } (52)

⇒ XR
l ≥ C

γ
XA

l (53)

⇒ XA
l ≤ γ

C
·XR

l (54)

We have derived above that for rational users, we have:

XR
k

f−1
k (y)

≤
( 2

γ + 1

)
·

XR
l

f−1
l (y)

(55)

For the adversarial users, we have:

XA
k

f−1
k (y)

≤ γ ·
XA

l

f−1
l (y)

(56)

If we take these two inequality together we get:

Xk

f−1
k (y)

≤
2

γ+1 ·XR
l + γ ·XA

l

f−1
l (y)

(57)

Thus, to get

Xk

f−1
k (y)

≤ Xl

f−1
l (y)

(58)

we need that:

2

γ + 1
·XR

l + γ ·XA
l ≤ Xl (59)

By definition, we have that XR
l + XA

l = Xl. Because γ > 1, we know that 2
γ+1 · XR

l < XR
l and

γ · XA
l > XA

l . Thus, the amount by which 2
γ+1 · XR

l is smaller than XR
l is exactly the amount by

which γ ·XA
l can be larger than XA

l , for Inequality 59 to hold. Thus, we need:

(γ − 1) ·XA
l ≤ (1− 2

γ + 1
)XR

l (60)

If we now use Equation 54, i.e., XA
l ≤ γ

C ·XR
l , it follows that the next inequality implies the previous

one:

(γ − 1) · γ
C

·XR
l ≤ (1− 2

γ + 1
)XR

l (61)

⇔ γ2 − γ

C
≤ γ − 1

γ + 1
(62)

Because γ > 1 and C > 1, we can derive the following:

(γ + 1) · (γ2 − γ) ≤ C · (γ − 1) (63)

⇔ (γ − 1) · (γ2 + γ) ≤ C · (γ − 1) (64)

⇔ (γ2 + γ) ≤ C (65)

This completes the proof of the lemma.
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C. User Study: Set-up

The UI design process included an early exploratory study (with 6 users) and a pilot study (with 6
users). Upon completion of an iterative UI design phase, we recruited 16 users (8 females) from the
Greater Seattle area for the usability study. All of the users had some college education and used a
computer for at least 10 hours per week. The average age of our participants was about 39, ranging
from 22 to 66 years old. None of the users worked for the same company, none of them were usability
experts and none of them had used a p2p backup system before. All of the users understood the
meaning of “backing up your files” before coming to the study, however only a few of them had used
server-based online backup systems before. We recruited two different groups of users: novices and
experts. Experts were screened to be users who had used p2p file-sharing software and modified the
maximum bandwidth limits of their client in the last 5 years. We also ensured they had some idea
about the speeds of an average home broadband connection. Novices were screened such that they
did not have technical jobs, were not sophisticated enough to set-up a wireless router by themselves,
and had never adjusted the maximum bandwidth limits of a p2p file-sharing client.

In this work we are particularly interested in evaluating the “advanced settings” version of the UI.
Thus, our true target group of users was in fact the experts group. However, we included the novice
users to make sure we identified all of the problems of the UI or the system in general that might not
be found when only testing expert users. We had 8 experts and 8 novices. We ran one participant
at a time with each session lasting about 1.5 hours. The users filled out a pre-study questionnaire
(20 minutes), completed a series of interactive tasks using the UI (45 minutes), and then completed
another post-study survey (20 minutes). We ran the software on a single 3 GHZ Dell computer at full
resolution using a 20” 1600x1200 Syncmaster display.

D. Proof of Theorem 3

We discuss some general conditions under which a multi-dimensional Newton iteration converges even
if a diagonal approximation is used for the Jacobian. We essentially follow Kantorovich’s proof of the
local convergence of Newton’s method (Kantorovich’s theorem [12] and [13] Chapter XVIII).

Definition 7. Suppose F : Rn → Rm. Writing the vector valued function F (x1, x2, · · · , xn) as

(f1(x1, x2, · · · , xn), · · · , fm(x1, x2, · · · , xn))

one defines the Jacobian matrix as the m× n matrix J where Jij = ∂fi/∂xj.

We will need the following two results:

Theorem 5. Suppose F : Rn → Rm is continuously differentiable, and a, b ∈ Rn. Then

F (b) = F (a) +

∫ 1

0
J(a+ θ(b− a))(b− a)dθ,

where J is the Jacobian matrix of F.

The above theorem is the second fundamental theorem of calculus. The next theorem extends the
triangle inequality obeyed by norms to integrals.

Theorem 6. If F : R → Rn is integrable over the interval [a, b], then∥∥∥∥∫ b

a
F (t)dt

∥∥∥∥ ≤
∫ b

a
∥F (t)∥dt. (66)
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We also recall the definition of the operator norm of a matrix.

Definition 8. If A ∈ Rm×n, the norm of A is defined as

∥A∥ = max

{
∥Ax∥
∥x∥

: x ∈ Rn, x ̸= 0

}
.

The norm defined above has the following properties:

1. It is a norm on the space Rm×n;

2. ∥Ax∥ ≤ ∥A∥∥x∥ for all A ∈ Rm×n, x ∈ Rn;

3. ∥AB∥ ≤ ∥A∥∥B∥ for all A ∈ Rm×n, B ∈ Rn×p.

The following is a well-known theorem from Functional analysis.

Theorem 7. Suppose J : Rm → Rn×m is a continuous matrix-valued function. If J(x∗) is nonsin-
gular, then there exists a δ > 0 such that, for all x ∈ Rm with ∥x − x∗∥ < δ, J(x) is nonsingular
and

∥J(x)−1∥ < 2∥J(x∗)−1∥.

Proof. (Sketch.)The first part follows from the fact that if J(x∗) is non-singular, then det J(x∗) ̸= 0
and consequently there is a neighborhood of x∗ where the determinant does not vanish (polynomials
define continuous maps). The latter part follows from the fact that if the map x 7→ J(x) is continuous
then so is the map x 7→ J(x)−1 whenever the latter map is defined.

Definition 9. Suppose F : Rn → Rm. Then F is said to be Lipschitz continuous on S ⊆ Rn if there
exists a positive constant T such that

∥F (x)− F (y)∥ ≤ T∥x− y∥, for all,y ∈ S.

This definition can also be applied to a matrix-valued function F : Rn → Rm×n using a matrix
norm to ∥F (x)− F (y)∥.

The usual Newton iteration is phrased as

x(k+1) = x(k) − J(x(k))−1F (x(k)). (67)

The Newton iteration is known to converge to a root, x∗, of the function F if we start the iteration
close enough to x∗ (such that the Jacobian is non-singular).

We wish to analyze the convergence of the following update rule:

x(k+1) = x(k) −D(x(k))−1F (x(k)), (68)

where D is the diagonal sub-matrix of the Jacobian. To this end, we define the matrix L by the rule
J(x) = D(x) + L(x), i.e., L comprises of the off-diagonal partial derivatives in the Jacobian.

We will show that if we are in the situation that J and D are Lipschitz continuous and that
L(x∗) = 0 (is the zero matrix), then the above iteration rule also converges to the root x∗ as long as
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we start close enough to the root.

Subtracting x∗ from both sides of equation (68) and noting that F (x∗) = 0 we have

x(k+1) − x∗ = x(k) − x∗ −D(x(k))−1F (x(k))

= x(k) − x∗ −D(x(k))−1
(
F (x(k))− F (x∗)

)
.

We now use Theorem 5 to estimate F (x(k))− F (x∗):

F (x(k))− F (x∗)

=

∫ 1

0
J(x∗ + θ(x(k) − x∗))(x(k) − x∗)dθ

=

∫ 1

0
J(x∗)(x(k) − x∗)dθ

+

∫ 1

0

(
J(x∗ + θ(x(k) − x∗))− J(x∗)

)
(x(k) − x∗)dθ

= J(x∗)(x(k) − x∗)

+

∫ 1

0

(
J(x∗ + θ(x(k) − x∗))− J(x∗)

)
(x(k) − x∗)dθ.

Assuming L(x∗) = 0 we have

F (x(k))− F (x∗) = D(x∗)(x(k) − x∗)

+

∫ 1

0

(
J(x∗ + θ(x(k) − x∗))− J(x∗)

)
(x(k) − x∗)dθ.

Therefore, ∥∥∥F (x(k))− F (x∗)−D(x∗)(x(k) − x∗)
∥∥∥

=

∥∥∥∥∫ 1

0

(
J(x∗ + θ(x(k) − x∗))− J(x∗)

)
(x(k) − x∗)dθ

∥∥∥∥
≤

∫ 1

0

∥∥∥(J(x∗ + θ(x(k) − x∗))− J(x∗)
)
(x(k) − x∗)dθ

∥∥∥
≤

∫ 1

0

∥∥∥J(x∗ + θ(x(k) − x∗))− J(x∗)
∥∥∥ ∥x(k) − x∗∥dθ

≤
∫ 1

0
TJθ∥x(k) − x∗∥2dθ (using Lipschitz continuity of J)

≤ TJ

2
∥x(k) − x∗∥2.
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We now have

x(k+1) − x∗

= x(k) − x∗ −D(x(k))−1(F (x(k) − F (x∗))

= x(k) − x∗ −D(x(k))−1[D(x∗)(x(k) − x∗)

+ F (x(k))− F (x∗)−D(x∗)(x(k) − x∗]

=
(
I −D(x(k))−1D(x∗)

)
(x(k) − x∗)

−D(x(k))−1
(
F (x(k))− F (x∗)−D(x∗)(x(k) − x∗)

)
.

Now applying norms on both sides

∥x(k+1) − x∗∥

≤
∥∥∥(I −D(x(k))−1D(x∗)

)
(x(k) − x∗)

∥∥∥
+

∥∥∥D(x(k))−1
(
F (x(k))− F (x∗)−D(x∗)(x(k) − x∗)

)∥∥∥
≤

∥∥∥I −D(x(k))−1D(x∗)
∥∥∥ ∥∥∥x(k) − x∗

∥∥∥
+

∥∥∥D(x(k))−1
∥∥∥ ∥∥∥F (x(k))− F (x∗)−D(x∗)(x(k) − x∗)

∥∥∥
≤

∥∥∥I −D(x(k))−1D(x∗)
∥∥∥ ∥∥∥x(k) − x∗

∥∥∥
+

TJ

2

∥∥∥D(x(k))−1
∥∥∥ ∥∥∥x(k) − x∗

∥∥∥2 .
We are assuming that D is also a Lipschitz continuous map:∥∥∥I −D(x(k))−1D(x∗)

∥∥∥ =
∥∥∥D(x(k))−1

(
D(x(k))−D(x∗)

)∥∥∥
≤

∥∥∥D(x(k))−1
∥∥∥ ∥∥∥D(x(k))−D(x∗)

∥∥∥
≤ TD

∥∥∥D(x(k))−1
∥∥∥ ∥∥∥x(k) − x∗

∥∥∥ .
Thus we have

∥x(k+1) − x∗∥ ≤ 3T

2
∥D(x(k))−1∥∥x(k) − x∗∥2,

where we have set T = max{TJ , TD}.

If x(k) is sufficiently close to x∗, then: ∥D(x(k))−1∥ ≤ 2M,
where M = ∥D(x∗)−1∥ = ∥J(x∗)−1∥ by our assumption that L(x∗) = 0.

Thus if x(k) is sufficiently close to x∗, then: ∥x(k+1) − x∗∥ ≤ 3TM∥x(k) − x∗∥2.
Moreover, if

∥x(k) − x∗∥ <
1

6TM
,

then

∥x(k+1) − x∗∥ <
1

2
∥x(k) − x∗∥.

This completes the proof of Theorem 4.
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