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Crowdsourcing markets like Amazon’s Mechanical Turk or Crowdflower are quickly growing in size and
popularity. The allocation of workers and compensation approaches in these markets are, however, still very
simple. In particular, given a set of tasks that need to be solved within a specific time constraint, no mecha-
nism exists for the requestor to (a) find a suitable set of crowd workers that can solve all of the tasks within
the time constraint, and (b) find the “right” price to pay these workers. In this paper, we provide a solution
to this problem by introducing CrowdManager — a framework for the combinatorial allocation and pricing
of crowdsourcing tasks under budget, completion time, and quality constraints. Our main contribution is
a mechanism that allocates tasks to workers such that social welfare is maximized, while obeying the re-
questor’s time and quality constraints. Workers’ payments are computed using a VCG payment rule. Thus,
the resulting mechanism is efficient, truthful, and individually rational. To support our approach we present
simulation results that benchmark our mechanism against two baseline approaches employing fixed-priced
mechanisms. The simulation results illustrate that our mechanism (i) significantly reduces the requestor’s
costs in the majority of settings and (ii) finds solutions in many cases where the baseline approaches either
fail or significantly overpay. Furthermore, we show that the allocation as well as VCG payments can be
computed in a few seconds, even with hundreds of workers and thousands of tasks.

1. INTRODUCTION

The rapid growth of the Internet has helped to significantly lower the cost of coordi-
nation, resulting in novel forms of large-scale cooperation such as the development
of open source software (e.g., Linux), or the collaborative production of information
with little central control (e.g., Wikipedia, Youtube). In particular, when combining
the high-level cognitive capabilities of loosely organized groups of humans with the
number-crunching capabilities and scalability of computer systems, we can now run
complex problem-solving processes that would have been unthinkably difficult only a
few years ago [Bernstein et al. 2012a; Malone et al. 2011].

The advent of micro task markets such as Amazon’s Mechanical Turk (MTurk),
Clickworker, or CrowdForge, has further widened the scope and speed of collabora-
tive production. We can now recruit hundreds or thousands of human workers, at any
point in time, and at very low costs (e.g., $4 per hour). Currently, these markets are
focused on recruiting workers for off-line batch processing of large amounts of data or
tasks in parallel. However, when dealing with real-time interactive systems or com-
plex problem-solving workflows, tasks cannot simply be cast into bulk parallelization
anymore. Consider, for example, text-processing [Bernstein et al. 2010], Q&A systems
[Bigham et al. 2010], real-time fraud detection, or translation tasks [Minder and Bern-
stein 2012b]. When crowdsourcing workers for such systems, three additional chal-
lenges occur: crowd latency, dynamic pricing, and quality control.

First, crowd latency is the problem that there may be a long delay between posting
a set of tasks to a micro task market and the completion of all these tasks. It sim-
ply takes time to identify and recruit enough suitable crowd workers, and until those
workers have completed all tasks at hand. In particular in interactive applications
and complex problem-solving workflows, a very quick response is required or at least
all tasks must be completed within a specific time constraint. As an example, consider
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the word editor Soylent [Bernstein et al. 20101, which incorporates crowd workers for
spell checking or text shortening tasks. Given the interactive nature of such tasks,
response time has to be within seconds or users will abandon those systems [Schur-
man and Brutlag 2009]. Generally, it can be shown that latency is a major obstacle
for fostering parallel computing and scalability in distributed systems [Zhang et al.
1994]. Thus, crowd latency significantly limits the use of crowdsourcing markets for
interactive or complex problem-solving applications.

Second, current market designs do not allow for the dynamic pricing of tasks. In
particular, they require the ex-ante definition of a worker’s wage for solving a task.
This ignores both the workers’ opportunity costs as well as the need to adapt task
pricing to current market conditions (e.g, availability of workers). Imagine a particular
task with a hard time constraint (e.g., a text that needs to be translated within 10
minutes). Without a suitable mechanism, the requestor has to “guess” the right price
to pay the crowd workers to find enough workers such that all tasks will be completed
on time. If the price is too low, he won’t finish the tasks on time. If the price is too high,
the requestor will waste a lot of money.

Third, quality control of the results produced by the crowd workers is essential for
both real-time interactive systems and complex workflows. For example, in workflows
incorporating complex sequential producer-consumer relationships [Malone and Crow-
ston 1994; Malone et al. 1999], high accuracy in quality reduces the amount of expen-
sive verification mechanisms needed to elicit truthful and correct answers such as
verification [Avery et al. 1999; Von Ahn and Dabbish 2004], voting for the best answer
[Bernstein et al. 2010], or tracking functional properties such as the working time
[Rzeszotarski and Kittur 2011; Minder and Bernstein 2012b].

Recent research by Bernstein et al. [Bernstein et al. 2012b; Bernstein et al. 2011]
addresses the problem of time-constrained tasks by introducing a retainer model for
pre-recruiting on-demand crowd workers. Essentially, the retainer covers the oppor-
tunity cost of reserving a crowd worker’s time to ensure his availability. Using this
technique, Bernstein et al. were able to lower crowd latency to two seconds. While
this model addresses the crowd latency problem, it does not consider the possible mar-
ket inefficiencies that result from the lack of dynamic pricing mechanisms and non-
consideration of workers’ quality.

1.1. Overview of Contributions

In this paper, we introduce the CrowdManager framework for the combinatorial allo-
cation and pricing of crowdsourcing tasks under budget, completion time, an quality
constraints. This includes the application of human computation in real-time inter-
active systems as well as time-constrained complex problem-solving processes. The
contribution of this paper is threefold: (1) We introduce the basic architecture of the
CrowdManager framework for task allocation and pricing in crowdsourcing markets.
(2) We present a combinatorial allocation and pricing mechanism, which is at the core
of the CrowdManager framework. This mechanism a) elicits worker’s private opportu-
nity costs, completion time, desired number of tasks to solve, and quality levels, b) uses
an integer program (IP) to find the allocation of tasks to workers that maximizes social
welfare while obeying quality and time constraints, and c) determines prices using a
Vickrey-Clarke-Groves (VCG) mechanism. Thus, our mechanism is efficient (i.e., it allo-
cates tasks to those workers with the lowest opportunity costs), truthful (workers are
best off reporting their true costs), and individually rational (no allocated worker gets
paid less than his opportunity cost). (3) Using a simulation, we compare our mecha-
nism to two fixed-price mechanisms operating at various fixed price levels. We provide
evidence that for most settings, our mechanism is able to increase the number of fea-
sible allocations and can significantly reduce the requestor’s costs.
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1.2. Outline

The remainder of this paper is structured as follows. In Section 2, we discuss related
work. In Section 3, we introduce the CrowdManager’s system architecture. In Section
4, we describe our main contribution, the allocation and pricing mechanism. In Section
5, we present the results of the simulation. We conclude by discussing the limitations,
possible extensions, and future work.

2. RELATED WORK
2.1. Human Computation, Collective Intelligence, Social Computing, and Crowdsourcing

The new modes of group collaboration fostered by the rapid growth of the Internet are
described by a variety of terms such as “human computation,” “social computing,” “col-
lective intelligence,” or “crowdsourcing.” There is an on-going debate in the research
community about the clear distinction between these concepts [Law and Ahn 2011,
Quinn and Bederson 2011; Malone et al. 2010]. In the context of this paper and in
analogy to [Law and Ahn 2011] and [Von Ahn 2009], we simply consider hAuman com-
putation as computation that is carried out by humans (e.g., labeling images, trans-
lating sentences, etc.). Analogously, the term human computation systems describes
intelligent systems and paradigms to organize groups of human actors to carry out
the process of computation. Crowdsourcing, on the other hand, is the act of outsourc-
ing tasks, traditionally performed by an employee or contractor, to an undefined, large
group of people or community (a crowd) through an open call. In this sense, crowdscour-
ing can be seen as a tool to recruit workers in a human computation system. [Law and
Ahn 2011; Malone et al. 2010; Quinn and Bederson 2011] provide a comprehensive
overview about the topic in general and a discussion of recent research.

2.2. Managing Crowd Latency

Current crowdsourcing applications are limited due to crowd latency, which mostly
arises due to the potentially lengthy process of identifying and recruiting suitable
workers. Thus, both practitioners and researchers are interested in finding new tech-
niques and models to either influence or predict the remaining completion time.

Most relevant to this paper is the above-mentioned retainer model [Bernstein et al.
2011; Bernstein et al. 2012b], which uses the idea of pre-recruiting a group of workers,
paying them a small fee for being ready whenever a new task arrives. A different
approach is used in VizWiz [Bigham et al. 2010], which uses the crowd to describe
images published by blind people by submitting an audio file. Here, response time
is improved by constantly reposting old tasks. While this approach guarantees that
workers are primed and thus available, it is not cost-effective for multiple reasons:
they do not elicit worker’s true costs, they do not consider time constraints, and, in
contrast to our approach, they do not try to find an efficient allocation of workers to
tasks, given their costs and completion times.

Because completion time is of such high importance for many applications, several
predictive models have recently been developed. Huang et al. [2010] predict the result-
ing completion time and task quality based on the number of assignments per task
and the financial reward. Similarly, Wang et al. [2011] predict completion time using
a survival analysis model. In contrast to predicting completion time and quality based
on statistical models, we take a mechanism design approach. We elicit the opportunity
costs of the currently available set of workers, measure their quality levels and com-
pletion times per task, and then find an efficient allocation of tasks to workers that
guarantees completion of all tasks within the requestor’s time and quality constraints.
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2.3. Pricing Mechanisms for Crowdsourced Tasks

Setting the “right” price per task is perhaps one of the most difficult challenges each
requestor faces when using a micro task market. Several studies have already ex-
amined the relationship between price, completion time, and quality. While some re-
search on standard labor markets suggests that there is no statistically significant
impact of higher payments on the resulting quality [Fehr and Goette 2005], Mason
and Watts [2010] showed that higher payments accelerate the completion time of a
task on MTurk. But even without time or quality constraints, a requestor must find
prices that are at least as high as worker’s opportunity costs (reservation wage). Hor-
ton and Chilton [2010] provide a theoretical model of labor supply and calibrate their
model in a field experiment to predict a worker’s reservation wage. Again, instead of
relying on statistical models, we use a mechanism design approach that sets prices by
reacting to the opportunity costs of the currently available set of workers.

Recently, Singer et al. [2011] proposed the first on-line pricing mechanism for hu-
man computation systems. They introduced a mechanism that assigns a worker to a
task when his bid (for a task) is below a price threshold that is calculated based on a
sample of agents’ bids from previous time periods. This mechanism is designed for do-
mains where workers arrive online (i.e., sequentially), and where the requestor wants
to maximize the number of completed assignments for a given budget. In contrast, we
do not consider an online problem, but use the retainer model to keep a large number
of users ready for when new tasks arrive. Our CrowdManager framework elicits work-
ers’ private costs truthfully, and allocates tasks efficiently. Our mechanism does not
maximize the number of tasks that are solved given a fixed budget, but instead finds
an allocation of tasks to workers that maximizes social welfare and guarantees that a
batch of tasks can be completed within the budget, time, and quality constraints.

3. CROWDMANAGER: SYSTEM ARCHITECTURE AND BIDDING INTERFACE

In this section, we present the CrowdManager’s system architecture. Our framework
builds on Bernstein et al.’s [2011] retainer model which pre-recruits workers and holds
them idle in a retainer (for a small fee) until a new task is received. Using the retainer
model, one needs to decide a) how many workers to keep in the retainer, and b) how
much to pay them to cover their opportunity costs for waiting in the retainer. It is
conceivable to build supervised learning mechanisms— based on prior experience —to
determine the optimal number of crowd workers to be held idle in the retainer as well
as the suitable payment. In this paper, however, we do not concern ourselves with the
details of the retainer model, and instead defer this to future work.

In addition to using a retainer, and in contrast to the work of Berstein et al. [2011],
we a) use a sophisticated task allocation algorithm instead of using a first-in first-
served allocation algorithm, and b) use a truthful pricing mechanism instead of a fixed
price per task. By eliciting worker’s private opportunity costs, their skill levels, as
well as their preferred number of jobs, we maximize social welfare and, in most cases,
significantly reduce the requestor’s cost compared to fixed-price mechanisms.

3.1. System Architecture

The architecture of CrowdManager consists of four main components whose interac-
tion is also illustrated in Figure 1:

(1) The Application Interface is used to communicate with task requestors. It may
receive (i) notifications of future work packages (sets of tasks), or (ii) an actual
set of tasks that needs to be completed. In both cases, the Application Interface
forwards these to the system’s Kernel which handles the execution and returns the
results back to the Application Interface, which forwards them to the requestor.
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Fig. 1: CrowdManager’s System Architecture

(2) The Recruitment Interface recruits crowd workers for the Retainer and releases
them if they are no longer required. To that end, it employs the public API’s of
various micro task markets to publish recruitment tasks. If a crowd worker accepts
a recruitment task, then he is transferred into the Retainer, where he remains in
a waiting state, being payed a very small wage for just being available.

(3) The dynamically sizable Retainer contains crowd workers that are waiting for the
allocation of tasks (possibly after completing a qualification test and/or reporting
their opportunity costs). The Retainer communicates with the Recruitment Inter-
face to add or remove workers, and with the Kernel to allocate tasks to workers.

(4) The Kernel dynamically adapts the size of the Retainer by recruiting workers
through the Recruitment Interface or releasing them from the Retainer. Further-
more, it is responsible for scheduling, prioritizing, allocating, and pricing tasks in
a work package. When tasks need to be allocated, the workers currently in the Re-
tainer must report their types via a bidding interface (see Figure 2). Based on these
type reports or bids, the Kernel’s allocation mechanism allocates tasks to workers,
and the pricing mechanism finds corresponding prices.

(a) The Kernel’s Allocation Mechanism takes as input the requestor’s budget,
quality, and time constraints, as well as each worker’s reported opportunity
costs, the number of tasks he wants to solve, and estimates regarding his qual-
ity level and completion time. It then finds an allocation of tasks to workers
that maximizes social welfare, given the requestor’s constraints.

(b) The Kernel’s Pricing Mechanism determines a price per task to be paid each
worker, taking into account all worker-specific information. We use a VCG pay-
ment rule to induce truthful reporting of opportunity costs and the desired
number of tasks to be completed.

3.2. Example: Time-Constrained Text Translation
To illustrate the CrowdManager framework, consider the following example:

We need a high-quality translation of ten pages from German into English,
within the next ten minutes, as cheaply as possible, but for at most $20.
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Let’s assume that, to realize this task, we have at our disposal an algorithm incor-
porating both machine translation software and monolingual human translators as
described by Minder and Bernstein [2012a; 2012b]. In this case, the Requestor’s Ap-
plication notifies the Application Interface about this forthcoming work package (Fig.1
(1)) and the Application Interface forwards this request to the Kernel. To prepare for
the incoming task, the Kernel instructs the Recruitment Interface to start recruiting
crowd workers for the Retainer. Then, the Recruitment Interface publishes a job offer
on several micro task markets (Fig.1 (2)). Based on prior experience (e.g., a learned
prediction employing a supervised learning mechanisms that is beyond the scope of
this paper) and constraints specified by the Requestor’s Application, the Recruitment
Interface recruits a specific number of crowd workers and transfers them into the Re-
tainer while offering them a small payment to cover their opportunity cost for staying
in the Retainer (Fig.1 (3)).

CrowdManager's Bidding Interface

We have 25 translation tasks to complete. Please solve the following sample
task. We will use your answer to determine whether you can participate in this
translation exercise. Afterwards, please specify how many of such translation
tasks you would like to solve, and which minimum wage per task you would
accept.

Example Task

Please improve the following sentence by correcting grammatical errors and
making the sentence more comprehensible.

"Wikipedia is a Founded in January 2001 free online encyclopedia
in many languages.”

Answer:

Wikipedia is a free online er ia that is ilable in many languages and
was founded in January 2001. /

How many of those tasks do
you want to solve?

What is the minimum wage 1$)

per task you would accept?

Fig. 2: A Mock-up of the CrowdManager’s Bidding Interface

After “arriving” in the Retainer, the crowd workers get the instruction to wait until a
set of tasks arrives. When the Requestor’s Application submits the announced transla-
tion task via the Application Interface it gets forwarded to the Kernel (Fig.1 (4)). Now,
each worker in the Retainer has to solve an initial qualification test and must report
his opportunity cost. We can think of this “report” as a bid in a reverse (procurement)
auction. Effectively, the worker specifies the minimum amount of money for which he
would be willing to work. But, if allocated, the payment mechanism will later deter-
mine a price that is as high as the worker could have reported his costs and still been
allocated. Figure 2 presents a mock-up of how the interface may look like, to enable the
qualification test and elicit the worker’s cost. The crowd worker has to solve the qual-
ification task and declare how many tasks he wants to solve and for what minimum
price. After the crowd workers have completed the qualification task, the Kernel ana-
lyzes each crowd workers’ completion time for the qualification test and ascertains if
the quality of the test completion was sufficient. If the test result is not sufficient then
the crowd worker will not be allocated any tasks and, therefore, be evicted from the
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Retainer (Fig.1 (6)). Given the test results and bids from the remaining crowd workers,
the Kernel finds the best allocation of tasks to crowd workers. This entails deciding
how many tasks to allocate to each of them and how much to pay each worker per
task, with the goal to maximize social welfare under the completion time and qual-
ity constraints (see Section 4 for the details). Then, the Kernel allocates the tasks to
the crowd workers, waits for the execution, collects their computed results (Fig.1 (7)),
and returns the final result back to the Application Interface that returns it to the Re-
questor’s Application (Fig.1 (8)). Finally, each worker gets paid according to the prices
determined by the Kernel’s pricing mechanism (Fig.1 (9)).

4. THE ALLOCATION AND PRICING MECHANISM
4.1. Formal Model and Assumptions

We now describe the formal model we use for the design of our allocation and pricing
mechanisms. Note that we will make a number of simplifying assumptions to keep
the model and the corresponding mechanisms as simple as possible. In Section 6, we
discuss multiple ways to extend the formal model and our mechanisms to more com-
plicated settings.

Requestor: We consider a single requestor who submits a work package W contain-
ing a set of m tasks to the CrowdManager, i.e., W =(wy, ..., w,,). The requestor has a
completion time constraint 7' > 0, denoting the maximum amount of time he is will-
ing to wait until all m tasks in W are solved. Tasks can be solved at various quality
levels ¢ € [0,1]. The requestor has a quality constraint @ € [0, 1], that specifies the
minimum quality level at which each task must be solved. If all m tasks are solved
within the time constraint 7' and under the quality constraint (), then the requester
has positive value B > 0 (measured in dollars) for this, and value 0 otherwise. Let C
denote the total cost the requester has to pay for getting all m tasks solved. We assume
the requestor has quasi-linear utility U = B — C if all tasks get solved, and U = —C
otherwise. Thus, the requestor is willing to spend at most B, and wants to minimize
the cost for getting all m tasks solved. Naturally, B will denote the requestor’s budget
for the request. Taken together, a request is defined as R = (W, B, T, Q).

In the text translation example, the work package W consisted of m paragraphs of
German text that needed to be translated into English, within time constraint 7" = 10
minutes, at a high quality (e.g., @ = 0.9), and given a maximum budget of B = $20.

Crowd Workers: We have a set of n crowd workers I =(iy,...,i,) that are in the
retainer. For now, we assume that workers do not leave the retainer unless they fail
the qualification test or they have completed all tasks that have been allocated to them.
Each crowd worker has a private cost ¢; > 0 for solving any task w € W, and wants to
solve at most j; > 1 tasks.! We rate a worker’s qualification level ¢; € [0, 1] based on a
qualification test.? Furthermore, we estimate the time a worker needs to solve a task
based on his performance in the qualification test; we denote this completion time as
t;(> 0). Of course, in practice workers may slow down over time, or perform at lower
quality levels compared to their qualification test (moral hazard problem). However, we
do not address these complications in this paper, but plan to address them in future
work. For now, we make the simplifying assumption that a worker who gets assigned a

1In some domains, it may be more natural to report an opportunity cost per time period (e.g., $2 per hour).
Fortunately, our mechanism can easily be adapted to such a setting without affecting the results.

2This quality assessment may be done 1) algorithmically, or 2) using other crowdworkers. Both approaches
are difficult to implement, and only possible for certain types of tasks which obviously constrains our ap-
proach. However, this problem is beyond the scope of this paper but will be addressed in future work.
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set of tasks will faithfully complete all tasks, continue to produce work at quality level
at least ¢; and that his completion time will remain ¢; throughout the whole process. We
call all of the worker-specific information his “¢ype,” and denote it 0, = (¢;, i, t:, ¢i), and
we let 6 denote the joint type of all workers. Via the bidding interface (see Figure 2),
workers make a type report, explicitly submitting ¢; and j;, and implicitly submitting ¢;
and ¢;. Of course, these type reports may be non-truthful, if a worker is better off lying
than by reporting truthfully. We let 6; = (&;, j;, #;, 4;) denote worker i’s type report, and
6 denote the joint type report of all workers.

The CrowdManager Mechanism: Based on the request R and the joint type re-

port 6, the CrowdManager mechanism allocates each task in the work package W to a
specific crowd worker and determines prices. The mechanism M defines an allocation

rule, mapping any type report 0 to an allocation z, and a payment rule mapping the

vector # and x to a price vector p. The allocation vector x and payment vector p can be
defined as x = (21, 23, ...z, ), Where z; is the number of tasks assigned to crowd worker
i, and p = (p1, p2, ...pn), Where p; is the price payed to agent i per task.

4.2. The Allocation Mechanism

Given m tasks, the requestor’s time constraint 7', quality constraint (), and each
agent’s (not necessarily truthful) type report 0, = (éi,ji,fi, gi), the allocation mech-
anism assigns tasks to agents, minimizing the total cost (i.e., maximizing social wel-
fare). The optimal solution x(é, m, T, Q) of this combinatorial optimization problem can
be found by solving the following integer program (IP):

min Zézxz (]—)
E et

s.t. Z Ti=m (2)
i=1

x; > 0,integer, Vic I (6)

Here, (1) denotes the objective, which minimizes the total costs. Constraint (2) ascer-
tains that exactly m tasks get assigned to the agents; constraint (3) ensures that each
agent i, given the number of tasks z; he is assigned and his completion time #;, will
be able to complete all tasks given the requestor’s time constraint 7'; constraint (4)
ensures that all tasks are accomplished within the quality constraint Q; constraint (5)
ensures that no agent i gets assigned more tasks than he is willing to solve; and finally,
constraint (6) ensures that no fractional tasks are assigned.

4.3. The Pricing Mechanism

The CrowdManager’s pricing mechanism computes an individual price p; to be paid
to agent ¢ for each task he solves. Of course, the payment must be at least as large
as the agent’s opportunity cost, i.e., p; > ¢;,. This constraint is called the individual
rationality constraint. Equally important, we want to obtain a #ruthful mechanism
such that agents are best off reporting their true opportunity costs in the bidding
interface. Thus, the price p; will generally be strictly higher than ¢;, and in particular,
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it will be the maximum price that agent i could manage to obtain, given any other type
report ] he could have made and still be allocated.

We obtain these properties by using the Vickrey-Clarke-Groves (VCG) payment rule,
where each agent’s payment is the negative externality it imposes on the other agents
by its presence in the mechanism. We let z* denote the optimal allocation with all
agents present, and 2~* denote the optimal allocation that would be chosen if agent
i were not present. The externality is then the difference in total value to the other
agents between the two alternatives z* (with agent i present) and z~! (without i
present). Given (not necessarily truthful) joint type report 6, the resulting VCG pay-
ment for agent i can be defined as:

n n
p@)= S o= S oeap

kel ki kel k#i

Consider a simple example with n = 4, m = 3, where all agents have the same
quality and completion times, but with costs ¢; = 10,¢2 = 20,¢3 = 30, and ¢4 = 40.
Thus, the optimal allocation is to assign one task each to agents 1, 2, and 3. Without
any of the agents 1, 2, or 3 present, the optimal allocation would also allocate one task
to agent 4. Thus, the resulting payment for agent 1 is p; = (20 + 30 + 40) — (20 + 30) =
90 — 50 = 40. Similarly, the payment for agent 2 is p, = (10+ 30 +40) — (10+30) = 80 —
40 = 40. Thus, all agents that get allocated, get a payment equal to the maximum cost
they could have reported and still be allocated. This also illustrates, that in general,
the payment will be strictly larger than the agents’ opportunity costs. Note that in
this simple example, the VCG payment mechanism degenerates to a simple reverse
auction. Of course, with different ¢;,¢; and j; for each agent, the resulting payments
are not as simple. In particular, it is not the case that all agents end up getting paid
the same per task. For example, we might pay some agents with a particularly low ¢;
much more than another agent with a high ¢;. In general, the more valuable an agent
is for the overall allocation, the more he will be paid.

4.4. Theoretical Properties

Given that we use VCG as the CrowdManager’s pricing mechanism, we immediately
obtain the following theoretical result:

PROPOSITION 1. The CrowdManager’s allocation and pricing mechanism is (1)
truthful, (2) efficient, and (3) ex-post individually rational.

This is a well-known theoretical property of the VCG mechanism (see, e.g., [Nisan
2007]), and thus we do not prove it here again . Let’s briefly discuss what this propo-
sition really says. First, the mechanism is truthful, i.e., agents are best off reporting
their true types 0; = (¢;, ji, ti, ¢;) in the bidding interface. Note that we do not only have
truthfulness with respect to the agents’ opportunity costs. The agents are also best off
truthfully reporting j;, i.e., the number of jobs they want to work on. For now, we have
assumed that agents have a certain capability of ¢; and ¢; which they cannot lie about.
In future work, we will need to relax this assumption and in particular consider the
trade-off that occurs for the agents in being able to reduce their completion time while
also lowering the quality level at which they produce.

In our domain, efficiency means that we find the allocation that maximizes social
welfare by allocating tasks to those workers with the lowest opportunity costs, taking
into account all other constraints. Given that the mechanism is truthful, we naturally
obtain efficiency in equilibrium, because agents are best off reporting their true costs,
and the allocation mechanism then has all agents’ true costs which enter the objective
function of the IP. Last but not least, ex-post individual rationality means that every
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agent obtains positive utility, i.e., every agent gets paid a price per task that is at least
as high as his reported opportunity cost.

Note that using VCG, we find the cost-minimizing allocation. However, this will
not minimize the amount the requestor has to pay, because VCG prices are gener-
ally higher than the reported opportunity costs of the workers (to get truthfulness).
However, in our simulations (see Section 5) we observe that using VCG-based pricing
results in lower costs compared to a fixed-price payment rule, at almost all fixed pric-
ing levels. For a discussion of the pros and cons of using VCG instead of a requestor-
optimal mechanism (in the sense of Myerson), please see the discussion in Section 6.

4.5. Budget Constraints and Infeasibility

In the description of the allocation and pricing mechanisms, we have so far ignored
that the problem may be infeasible for the CrowdManager to solve, i.e., there may
not even be a solution. There are multiple factors that can cause infeasibility. First,
given the agents’ quality levels ¢;, there may be no agent in the retainer with ¢; > Q.
Second, given the agents’ time constraints ¢;, there may not be an allocation that solves
all m tasks within the overall time constraint 7. Third, given the number of jobs j;
that agents are at most willing to solve, we may not be able to solve all m tasks. Any
combination of these three factors may, of course, also cause infeasibility.

But most importantly, the requestor also has a budget constraint B, i.e., the total
value he has for getting all m tasks solved given the constraints, which is the most he
is willing to pay. So far, we have ignored the budget constraint in the allocation mech-
anism, i.e., in the IP formulation provided in section 4.2. But we cannot incorporate
the budget constraint into the IP directly because the prices (which will determine
whether we violate the budget constraint or not) can only be computed once the alloca-
tion has been found. However, this is not a problem. Even if the IP returns a feasible
solution, we can then simply check if the sum of the payments the mechanism intends
to make is below the budget constraint, and return “infeasible” if it is not. The overall
procedure, also taking care of potential infeasibilities, is provided in Algorithm 1.

ALGORITHM 1: CrowdManagers Task-to-Worker Allocation and Pricing Procedure
Require: I, W, B, T,Q

6= runProcurement Auction(I, Quali ficationTest, m)

x = allocationMechanism(0, W, T, Q)

if x is feasible then .

p = paymentMechanism(0, x)
else

return no completion time feasible allocation found
end if

costs =) . Di- T

if costs < B then
return x, p
else

return no budget-feasible solution found
end if
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5. SIMULATION RESULTS

In this section, we show that, on average, CrowdManager’s allocation and pricing
mechanism increases the requestor’s utility compared to mechanisms that use prices
that are fixed ex-ante. We created a simulation environment, randomly varying all
parameters of requestors and agents, and measured the resulting number of feasible
allocations and the total costs for the requestor, for three different mechanisms.

5.1. Simulation Set-up

Using 10’000 distinct trials, we experimentally compared CrowdManager’s allocation
and pricing mechanisms against various benchmarks. In particular, we compared
each allocation by the CrowdManager’s allocation and pricing mechanisms with two
fixed-price baseline mechansisms, with ten different fixed prices each. In these fixed-
price mechanisms, given a budget B and number of tasks m, each task was priced
at prosk = B2, with 8 € {1.0,0.9,0.8,0.7,...,0.1}. Thus, for 3 = 1.0, the fixed-price
mechanisms spent all of the available budget on the m tasks, while for 8 = 0.1, they
only spent one tenth of the available budget. In reporting the results of our experi-
ments, we will always report data for these ten different budget levels. However, keep
in mind that the budget levels are just proxies for the fixed prices that are used by
the two baseline mechanisms. When posting tasks to MTurk without using a sophis-
ticated pricing mechanism, a requestor also has to “somehow” set a fixed price, and
naturally that fixed price will depend on the requestor’s budget. In our simulation,
for each of these different budget levels (i.e., fixed prices), we run the following two
baseline task-allocation mechanisms:

(1) Baseline 1: We use a first-completed first-served allocation, where any agent that
passes the qualification gets assigned a task if ¢; < prqsx. We simulate the allo-
cation procedure by continuously assigning tasks to any free agent. Hence, at the
beginning, all available agents are assigned one task. As soon as an agent finishes
a task (i.e., after t; time steps), we assign another task to that agent, and so on
until all m tasks in the requestor’s work package are completed.

(2) Baseline 2: We calculate the optimal allocation using the integer program defined
in Section 4.3, but we first remove each worker from 6 where ¢; > prosk.

These two allocation mechanisms allow us to compare the different pricing levels
controlled by 5 under (1) a sub-optimal allocation and (2) an optimal allocation as
computed by the integer program. We use the following parameters for our simulation:

(1) Work package: The number of tasks m per work package is uniformly distributed
between 50 and 500 tasks. Furthermore, we assume an average completion time of
t’ = 10 seconds per task.

(2) Requestor’s constraints: The requestor’s time constraint 7" is uniformly distributed
between 60 and 1200 seconds and his quality constraint @ is uniformly distributed
between 0.65 and 0.85. Given the number of tasks m, and the average completion
time of ¢/ = 10 seconds, we set the budget constraint to be B = m - ¢’ - p/, with p’
uniformly distributed between 0.1 cents and 0.15 cents (i.e., the price per second).

(3) Number of workers in the retainer: We always put at least 10 workers in the re-
tainer. Additionally, we put a number of workers in the retainer that depends on
the number of tasks m, the expected completion time ¢/, and the requestor’s time

constraint 7. We use the following formula for the total number of workers in the
retainer: 10 + 1.2 - m - % This ensures that we always have a reasonable number
of workers in the retainer. Fewer would lead to many more infeasibilities; more

would make the allocation problem too easy.
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(4) Workers: Each worker i’s completion time ¢; is uniformly distributed between 5
and 15 seconds (such that the average completion time is indeed 10 seconds). Each
worker’s opportunity cost per task is set to be ¢; = t;r;, where r; denotes worker
i's private cost for working one second, and is drawn from a uniform distribution
between 0.1 cents and 0.15 cents. The number of tasks j; that a worker is willing
to solve is distributed uniformly between 5 and %m. Finally, ¢; is drawn from a
uniform distribution between 0.65 and 0.85.

5.2. Results: Number of Feasible Allocation and Average Requestor Costs

To evaluate the CrowdManager’s performance, we consider two different performance
measures which both determine the overall utility of the requestor: (1) the average
number of feasible allocations and (2) the average cost for solving all tasks. We first
compare the number of feasibly allocations.

Out of the 10,000 trials, the CrowdManager’s allocation and pricing mechanism re-
sulted in 5’515 feasible allocations under the requestor’s budget, completion time, and
quality constraints. When comparing this measure with the baseline we can distin-
guish between four distinct cases:

(1) Both mechanisms find a feasible allocation

(2) Only the CrowdManager mechanism finds a feasible allocation. This case can hap-
pen in three ways: first, when using the first-completed first-served allocation
mechanism (baseline 1), this may result in sub-optimal allocations that end up vio-
lating the time constraint. Second, both baseline mechanisms use a fixed price, i.e.,
they pay all agents the same price, no matter what their ¢; or j;. The VCG payment
rule is able to differentially price different agents, depending on how much they
are contributing to social welfare. Thus, using VCG, we may find smaller overall
payments that are still less than the budget constraint, while the fixed-price mech-
anisms may exceed the budget constraints. Finally, infeasibility can always result
if we restrict the budget of the baseline mechanisms to be significantly smaller
than 100% because the VCG mechanism may in fact spend more money than the
baseline mechanisms.

(3) The CrowdManager mechanism does not find a feasible allocation, but at least one
of the baseline mechanisms does. This can be the case, even if the VCG mechanism
always has the full 100% budget available. As we pointed out in our small example,
the VCG mechanism generally pays a price strictly higher than the agents’ oppor-
tunity costs. This is necessary for a truthful mechanism. If by chance the fixed
price of the baseline mechanism is exactly at a level such that enough agents can
be recruited to find a feasible allocation (e.g., $30 in our above example), but the
incentive compatible payments of VCG would exceed the budget constraint, then
we get this particular case.

(4) Both mechanisms are not able to provide a feasible allocation.

Consider Table 1 where we present the percentages for the four different cases under
two extreme budget constraints. On the left side, we compare the three mechanisms
when the budget available to the baseline mechanisms is 100%, i.e., the fixed prices are
set as high as possible without violating the budget constraint. On the right side we
compare the three mechanisms when the budget available to the baseline mechanisms
is only 10%, i.e., the fixed prices are set relatively low, such that only 10% of the budget
is used. Now, let’s see what this means for the number of feasible allocations found by
the three mechanisms.

First, given a budget of 100%, we see that in each cell of the table, we have positive
numbers. Thus, indeed each of the 4 cases occurs in our simulation. We see that the
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Budget=100% Budget=10%
Baseline 1 | Baseline 2 Baseline 1 | Baseline 2
F | NF | F | NF | F | NF F | NF
CrowdManager Feasible (F) 55% | 16% | 60% | 11% || 0% 71% 16% | 55%
Mechanism Non-Feasible (NF) | 14% | 15% | 23% 6% 1% 28% 1% 28%

Table I: A comparison of the three mechanisms with respect to the percentage of cases where they found a
feasible allocation. On the left we consider the case where the budget available to the baseline mechanisms
is 100%; on the right we consider the case where the budget available to the baseline mechanisms is only
10%.

CrowdManager mechanism and the Baseline 1 (using the sub-optimal allocation) lead
to almost the same number of feasible and infeasible allocations, with the CrowdMan-
ager mechanism slightly outperforming Baseline 1. The highest number of allocations
is achieved by the Baseline 2 mechanism, as it also uses the optimal allocation mech-
anism but spends all of the budget, and, in particular, does not set a dynamic price
based on agents’ reported costs.

On the right side of Table 1, we see the situation for a very small budget of 10%,
i.e., very low fixed prices. Here we see that both baseline mechanisms find very few
feasible allocations, and the CrowdManager clearly outperforms both mechanisms in
this case. This is to be expected. With a very small budget, the fixed-price mechanisms
perform poorly because they must set a very low price, which will be below most agents’
opportunity costs.

=]
8
®

1 Feasible solution found by CrowdManager
O Feasible solution found by Baseline 1
Feasible solution found by Baseline 2

@
8
R

60% °

)
40% °

20%

Cases were a feasible allocation was found

0%
100% 80% 80% 70% 60% 50% 40% 30% 20% 10%

Budget Allocated by the Baseline Algorithm

Fig. 3: Comparison of all three mechanisms with respect to the number of feasible allocations found, given
different budget levels (i.e., price levels) used by the baseline mechanisms.

To get a better picture, consider now Figure 3. Here we graph all 10 different budget
levels (i.e., price levels) at once, plotting the number of feasible solutions found by all
three mechanisms. This clarifies the overall picture. We see that for a budget of 100%,
the Basline 2 mechanism finds the most feasible allocations, but that the advantage
over the CrowdManager’s mechanism shrinks very quickly. Already at a budget level
of 90%, the difference is within 5 percentage points. At budget levels between 70% and
50 %, the two mechanisms find essentially the same number of feasible allocations.
When reducing the budget further, the number of feasible allocations found by
Baseline 2 sharply decreases. The shape of the Baseline 1 mechanism is essentially
the same as the one of Baseline 2, except that on average, the percentage of feasible
allocations it finds is lower by about 15 percentage points and, hence, always strictly
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below our mechanism. Thus, we see that both aspects matter: the optimal allocations
of tasks (compare Baseline 1 and Baseline 2), as well as the optimal pricing of tasks
(compare Baseline 2 and CrowdManager).

The number of feasible allocations found by the three mechanisms is, however, only
half of the story. To get the full picture, and to determine the overall effect on the
requestor’s utility, we also need to consider the total amount of money the mechanisms
spend for allocating their tasks to the agents. Here, we find that the CrowdManager’s
mechanism significantly increases the requestor’s utility by minimizing the cost for
solving the tasks in almost all cases.

100%

80%

60%

40%

20%

Costs in % of the used budget

100% 90% 80% 70% 60% 50% 20% 30% 20% 10%
Budget Allocated by Baseline Algorithm

- CrowdManager cost for cases allocated by both CrowdManager and Baseline 1

- CrowdManager cost for cases by both Ci 1ager and ine 2
- Cost for Baseline 1 and 2

Fig. 4: Average costs for solving a work package in % of the budget by only comparing the cases were both
the CrowdManager and the baseline mechanisms find feasible solutions.

Consider Figure 4, where we plot the average cost for solving a work package in
% of the total budget available. Again, we plot this for all 10 different budget levels,
going from 100% on the left to 10% on the far right. Here we see the true power of the
VCG payment rule. When the baseline mechanisms use 100% of the budget, the VCG
payment rule only spends 30%. Even for those cases where the number of feasible
allocations found by CrowdManager and by Baseline 2 are the same (70% down to
50%), we see that the VCG payment rule results in costs that lie at around 1/2 of
the total costs spent by the baseline mechanisms. Note that for this figure, we limit
the comparison to those cases (parameter settings), where both mechanisms found a
feasible solution. Naturally, as we decrease the available budget all the way down to
10%, we ultimately get to settings where the number of feasible allocations found by
the baseline mechanism is very, very small (compare Figure 3). However, for those
settings where it does find an allocation, the total cost is obviously also very small (i.e.,
10% of the overall budget). Thus, in exactly those cases it is expected that the total
cost incurred by the CrowdManager is indeed higher than 10% of the budget.

Overall, these simulation results are very encouraging. They show that, for many
parameter settings, the CrowdManager will find allocations that are more cost effec-
tive than using a fixed-price mechanism. And, unless almost all of the available budget
is spent, the CrowdManager also finds the same or even more feasible allocations than
the baseline mechanisms. But most importantly, CrowdManager provides a principled
way to determine the “right” price and does not rely on “guessing” the right fixed price.
Thus, the CrowdManager is clearly able to increase the requestor’s utility, which de-
pends on both the number of feasible allocations found and the total cost.
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Fig. 5: Execution time of the CrowdManager’s allocation and pricing mechanism varying (a) the number of
tasks to be allocated (with fixed n = 50 workers in the retainer) and (b) the number of workers participating
an auction (with a fixed number of m = 200 tasks in the work package).

5.3. Runtime Analysis

We tested the performance of the CrowdManager allocation and pricing mechanism
using a prototype implementation in Java that employed the Gurobi Solver? for solving
the IP. We ran all evaluations on a Macbook Air, 1.8GHz Intel Core i7 with 4 GB RAM.
We were interested in the execution time of the mechanism depending on the number
of tasks m to be allocated and the number of workers n. As Figure 5(a) shows, varying
the number of tasks m to be allocated between 1 and 1000 (with fixed n = 50 workers
in the retainer) does not impact the execution time. The processing of the allocation
and pricing mechanism takes between 900 and 1150ms for the vast majority of cases.
In contrast, when varying the number of workers in the retainer (see Figure 5(b)),
the execution time increases quickly as the number of workers in the retainer grows.
This is due to an increasing number of constraints that are added to the IP as we add
more workers. Nonetheless, even an allocation problem with up to 160 workers can be
solved within 8 seconds on a laptop. Thus, despite the worst-case exponential running
time, typically-sized problems can be solved in practice within feasible time-frames.

6. DISCUSSION, EXTENSIONS, AND FUTURE WORK

The simulation results we presented in Section 5 are encouraging, suggesting that the
CrowdManager is a suitable framework for the combinatorial allocation and pricing
of crowdsourcing tasks with budget, completion time, and quality constraints. Clearly,
the most important open problem is to validate CrowdManager in practice. To this end,
we are currently designing an experiment to test our approach, using the translation
task described in Section 3. We are in the process of implementing the complete Crowd-
Manager framework as well as the two baseline mechanisms. In the experiment, we
plan to do A /B testing of the different mechanisms on Amazon’s Mechanical Turk. We
will compare the performance of the different mechanisms by keeping all parameters
of the experiment constant, only changing the allocation and pricing mechanisms.

Modeling Extensions. The experiment will also reveal CrowdManager’s robust-
ness regarding the simplifying assumptions we have made. First, we have assumed
that agents cannot fake their completion time ¢; and quality ¢;. We have proposed to
measure these variables during the qualification test. Hence, it will be imperative to

3www.gurobi.com
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design the qualification test appropriately — a problem that we will investigate in pilots
to our experiment. In addition, we have assumed that ¢; and ¢; are constant over time.
This may not be the case as learning effects / economies of scale could reduce these
factors or weariness effects could worsen them. However, these kinds of changes may
not be relevant in practice. It seems much more likely that environments where sim-
ilar tasks get executed repeatedly will issue repeating mechanisms, allowing workers
to declare their efficiency gains in lowering their bids in subsequent rounds.

Another source of change for ¢; and ¢; is the worker’s variability, as humans’ perfor-
mance is prone to various sources of variance [Bernstein et al. 2012a]. We will capture
this variance in a future model by employing reasonable distributions for the com-
pletion time and quality for which ¢; and ¢; are “just” sampled values. Note that these
distributional assumptions impact the allocation procedure significantly as constraints
(3) and (4) of the IP will have to be extended to handle these distributions and make a
statistical assessment as to when they hold (e.g., under a 95% confidence interval).

The most problematic reason for why ¢; and ¢; may not remain constant in practice is
the moral hazard problem. Workers may exert high effort during the qualification test
(high quality and low completion time), but may then significantly reduce their effort
once the actual tasks are coming in. Many crowdsourcing applications suffer from this
problem, and various approaches are conceivable to address it, including randomly
checking (e.g., via other crowdsourcing workers) the quality and completion time of
workers, and punishing them for low effort. However, the design of suitable mecha-
nisms that solve the moral hazard problem satisfactorily is still an open problem.

We have also made some simplifying assumptions regarding the retainer. First, we
have assumed that crowd workers do not leave the retainer before all tasks are solved.
In future work, we will extend our model to also handle a certain dropout rate, esti-
mated for each worker based on a decay function over time. We also need to investigate
the recruitment process both in terms of determining the size of the retainer as well
as the fee paid to workers for waiting in the retainer. The required size is dependent
on the set of type reports § we expect to get. The reward paid for joining the retainer
in turn will determine the feasibility of actually amassing a suitably sized retainer at
a given point in time and the quality of the workers populating the retainer. Hence,
the pricing and sizing strategy interact and are also an issue for future investigation.

VCG vs. Requestor-optimal Mechanisms. As mentioned before, our mechanism
finds an allocation that is social welfare maximizing. While our simulations have
shown that this also leads to large cost savings on average, our approach does not
directly minimize the amount the requestor has to pay. Of course, it is a natural
goal to design a mechanism that truly minimizes the requestor’s expected total cost
(e.g., by setting an optimal reserve price). Unfortunately, the beautiful theory of Myer-
son [1981] only describes optimal mechanisms for single-dimensional settings (where
agents’ types can be described via a single number). While some progress has recently
been made on the multidimensional case [Cai et al. 2011], an optimal solution for the
general case is still an open problem. However, in our setting, the difference between
using VCG compared to a requestor-optimal mechanism is likely to be very small be-
cause VCG prices are determined via the competition of all bidders in the retainer.
By inviting more bidders into the retainer, we incur a small cost, but we also increase
competition during the bidding phase which reduces VCG prices. Bulow and Klem-
perer [1996] have shown that for single-item auctions with i.i.d. bidder valuations,
VCG with one additional bidder outperforms an optimal auction without that addi-
tional bidder. Even though we do not have a formal proof for the multi-dimensional
case, the same bidder competition effect is present. Thus, the benefit of using an opti-
mal mechanism compared to using VCG are likely to be negligible in practice. Further-
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more, optimal mechanisms require distributional data about agents’ types and only
provide Bayes-Nash incentive compatibility, while VCG is a prior-free mechanism and
provides agents with a dominant strategy to be truthful. These are additional reasons
in favor of VCG, in particular in the crowdsourcing domain. In fact, our experiments
may reveal that even explaining the truthfulness property of VCG to crowdsourcing
workers is too large an obstacle in practice. Thus, in future work we also plan on in-
vestigating indirect mechanisms (in the sense of ascending auctions) that are easier to
comprehend for workers, but lead to the same (or similar) outcomes as VCG in practice.

7. CONCLUSION

Crowdsourcing markets like Amazon’s Mechanical Turk have grown immensely in re-
cent years. Yet, the allocation and pricing of workers in these markets is still very
simple, as most of them only offer a fixed-priced wage per task. These simple mar-
ket mechanisms are especially problematic for time-constrained applications such as
real-time interactive systems or complex workflows, where both the availability and
readiness of capable workers cannot be guaranteed with these limited mechanisms.

To address the shortcomings of existing mechanisms, we have introduced Crowd-
Manager, a framework for the combinatorial allocation and pricing of crowdsourcing
tasks under budget, completion time, and quality constraints. Our framework extends
the retainer model with a mechanism that elicits workers’ private costs for solving a
task, their capacity requests (in terms of number of tasks they want to solve), as well
as their abilities in terms of quality and completion time established through a qual-
ification test. Based on workers’ type reports and the requestor’s budget, completion
time, and quality constraints, the mechanism computes a social welfare maximizing
task allocation using an integer program, and corresponding VCG payments. Thus,
our mechanism is efficient, truthful, and individually rational.

Using simulations, we have shown that (1) our approach consistently finds more
allocations than a base-line approach relying on a first-completed first-served proce-
dure, (2) our mechanism achieves its solution under lower costs that an ex-ante defined
fixed-price-based baseline for almost all cases, with the exception of very low ex-ante
price-points that only yield very few feasible allocations, and (3) a baseline combining
our allocation mechanism with an ex-ante fixed-price may find more allocations than
our mechanism for high prices, but result in significantly higher costs on average.
Furthermore, our approach leads to a more efficient allocation than the fixed-pricing
scheme as it explicitly takes each worker’s opportunity cost into account. But most
importantly, our mechanism offers a principled way for finding the “right” price to
workers, removing the necessity of having to “guess” which prices may be optimal.

In future work, we will extend our model to address a number of simplifying as-
sumptions we have made. Furthermore, we will validate CrowdManager in a real-
world experiment, using a translation task with budget, completion time, and qual-
ity constraints. We believe that combinatorial allocation and pricing mechanisms for
crowdsourcing markets will enable important applications that are currently not pos-
sible due to limited market mechanisms. CrowdManager can serve as a robust building
block for managing crowd workers, in particular in time-constrained applications.
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