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Abstract No-arbitrage relationships are statements about prices of financial derivative contracts that follow purely
from the assumption that no market participant can make a risk-free profit. They are a fundamental tool of modern
finance and basis to all modern market models. The ever-growing complexity of financial derivatives impairs the
effectiveness of conventional approaches based on expected payments for understanding these relationships. In this
paper, we introduce the Logic Portfolio Theory (LPT), a new framework in typed first-order logic with higher-order
functions that allows users to prove no-arbitrage relationships based on the syntactic structure of contracts. We first
show that LPT is rich enough to replace informal or stochastic arguments by proving the well-known put-call parity
and Merton’s theorem inside the theory. This also yields the most general versions of these no-arbitrage relationships
to date. We second show that LPT is general enough to encompass both a simple stochastic model and a purely cash
flow oriented model.

1 Introduction

Financial markets are ubiquitous in economies
around the world. Every day, billions of dollars in
assets are traded, including pork bellies, company
shares, currencies, and complex financial derivatives.
To understand the processes that govern these com-
plex markets, economists as well as practitioners use
market models . These models cannot take into account
all aspects of a real market, so simplifying assump-
tions are needed. An assumption fundamental to all
modern financial market models is the no-arbitrage
principle, i.e., that no market participant can make a
profit without taking risk.

To understand what this means, consider two assets
that are traded in a market: a holder of asset A receives
$1 in case exactly one month from now, the price of
a certain stock has increased while a holder of asset
B receives $1 if it has gone down or remained equal.
Such assets would be considered derivatives because
payments depend on another underlying asset, the
stock. If the sum of the prices of the two assets is
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below $1, say $0.80, then a trader could buy both,
receive a guaranteed payment of $1 one month later,
and (ignoring interest) make a profit of $0.20. It is
widely accepted that such an arbitrage opportunity
should not exist in efficient markets for longer than
microseconds because it would be quickly exploited
and prices would adjust by the rules of supply and
demand until it is no longer profitable. We can thus
conclude by the no-arbitrage principle that the sum
of the two prices must be at least $1. This is what we
call a no-arbitrage relationship between the assets A
and B.
Note that this relationship holds independently of

the choice of a market model because we did not make
any assumptions on, e.g., the probability distribution
of the underlying stock. In fact, we did not use the
word “probability” at all. At a higher level, if we find
a way to prove formally that the price of one contract
or a combination of contracts must always be less
than or equal to that of another one purely due to the
no-arbitrage assumption, then we can be certain that
this relationship will hold in any market model. Vice
versa, a complete theory of no-arbitrage relationships
of financial contracts would yield a compact description
of the properties common to all market models.
Such a theory needs to deal with a large class of fi-

nancial derivatives. While the assets from our example
were simple (the holder received a payment at a fixed
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future point in time, contingent on some underlying
value), the derivatives one meets in today’s financial
industry can be much less so. Especially those con-
tracts that the counterparties make directly “over the
counter” rather than through a stock exchange, can
reach an impressive degree of complexity. Counting a
few examples, financial contracts may contain clauses
stating that under certain conditions

• one or both parties are granted the right to exit
early from the contract or extend it, possibly pay-
ing a premium,

• the contract is renewed periodically based on cur-
rent or historic market data or based on a choice
of one or both counterparties, or that

• further payments are delayed until a trigger event
occurs or one of the counterparties decides to take
action.

Researchers have been lacking a basic language to
talk about these complex derivatives and their no-
arbitrage relationships. Classical nonstochastic ap-
proaches (Varian, 1987) could not even express con-
cepts such as “choice”. Methods inspired by prior-free
stochastic analysis (Björk, 2004) do neither seem to
capture well the (essentially nonstochastic) nature of
arbitrage arguments because they inherit a focus on
finding the fair price (in terms of expected payments)
of a contract, rather than on the relationships between
prices of different contracts. Complexity of the expres-
sion for the fair price grows quickly in the complexity
of the contract and often additional assumptions are
needed to ensure that a price exists in the first place.
Probability is also a very complex theory, creating dif-
ficulties in applications such as automated reasoning.
In the present paper, we address the problem of

designing a rigorous, general framework for arbitrage
arguments. We focus on the structure of contracts
rather than on their prices. No-arbitrage relationships
can be proved by analyzing this structure syntactically.
The fundamental rules that relate different contract
patterns correspond to fundamental arbitrage strate-
gies.

More in detail, we present LPT , the Logic Portfolio
Theory of arbitrage-free financial derivatives markets.
LPT is a theory in typed first-order logic with higher-
order functions. The language of LPT (Section 2)
provides means for expressing financial contracts for-
mally in terms of their fundamental building blocks
(payment, delay, choice, reference to market data, etc).
It is modeled closely after the seminal work on the
formalization of contracts by Peyton Jones and Eber
(2005). The axioms of LPT describe the no-arbitrage

relationships between different building blocks. Our
main contribution is the axiomatic description of a par-
tial order on contracts we call the arbitrage relation:
x �b y means that the no-arbitrage condition implies
that the price of the contract x must be below or equal
to the price of the contract y whenever conditions b
hold (Section 3). We then demonstrate the expressive
power of our framework: we first show how LPT can
complement pricing and help find bounds on prices
when exact values are not known (Section 4). We next
show how two no-arbitrage relationships well-known
in the literature can be proved formally within LPT:
the put-call parity and Merton’s theorem.1 As we
will see, LPT in fact allows us to receive variants of
these theorems more general than shown in prior work
(Section 5). Finally, we describe two different models
of the theory: a simple probabilistic model and a new
model based on cash flows (Section 6). This raises
confidence that LPT can indeed describe the class of
all arbitrage-free financial market models.
Object-oriented frameworks (Arnold et al., 1995;

Eggenschwiler and Gamma, 1992) and domain-specific
languages (Frankau et al., 2009; Harrington et al., 2014)
have been used by banks since the early 90s for flexible
pricing of derivatives. Peyton Jones et al. (2000) were
the first to describe a domain-specific language that
could describe the structure of a financial contract
rather than its payout. Despite this tradition, we are,
to the best of our knowledge, the first to define an ax-
iomatic system to reason about the price relationships
in a formal financial contract language. Berthold (2011,
2013) provided an algorithm to compute a “canonical
form” of a contract in an extension of Peyton Jones
and Eber’s (2005) language, which, however, fails to
derive already basic identities that are true under no-
arbitrage assumptions. Bahr et al. (2015) defined a
simple language of financial contracts together with
a semantic equivalence relation. This relation delib-
erately does not ignore irrational choices such as not
exercising an option that leads to a risk-free profit
and hence has fewer equivalences than can be shown
via arbitrage arguments. Many of the mentioned au-
thors also described a denotional semantics for their
languages. LPT extends this concept by allowing sev-
eral different semantics as models of the theory. A
second branch of related research is formed by general
business contract languages (Hvitved (2012) provides
a survey); the generality of these approaches however

1Cf. (Hull, 2012) for an informal introduction and a discus-
sion of no-arbitrage relationships in various stochastic models.
An informal introduction is also provided at the beginning of
Section 5.
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prohibits a notion of arbitrage-freeness, making them
unsuitable for the purpose of this work.

LPT defines a unique algebra of financial contracts,
the elementary operations of which are the contracts’
fundamental building blocks. Its rich language allows
to express a large class of contracts and to combine
them in unlimited ways. The theorems obtained are
general and follow purely from the no-arbitrage princi-
ple without reference to any particular market model.
Additional assumptions beyond the no-arbitrage prin-
ciple can be expressed and reasoned about inside the
theory to obtain stronger conclusions. Since LPT is a
regular first-order theory (with higher-order functions),
proofs can be carried out using the standard mathe-
matical tools and intuition and standard model theory
can be applied. To the best of our knowledge, we are
the first to suggest a rigorous, logic-based framework
to study arbitrage at a syntactic level.

1.1 Preliminaries

LPT is presented as a theory in typed first-order
logic with higher-order functions2 (Manzano, 1996). It
therefore consists of two parts: first, the language, nam-
ing the types (i.e., different kinds of objects the theory
talks about) and the elementary operations (functions
to construct new objects from existing objects). Sec-
ond, the axioms, specifying how the operations are
related. Proofs are then constructed from the axioms
in the usual fashion. Recap that a model of a theory
defines a set for each type and a function for each
operation such that the axioms hold. For example,
the theory of vector spaces defines types Vector and
Scalar with operations such as (+) and (·) and the
vector space axioms. Models of this theory are the
vector spaces.

Our goal is to define LPT in such a way that the
types encompass any kind of data contracts refer to
together with the Contract type itself, the operations
define the essential building blocks of contracts, and
the axioms describe the relationships between contracts
under no-arbitrage assumptions, so that the models are
exactly the arbitrage-free market models. We can then
write down and reason about contracts without explicit
reference to any particular model. We would like to
stress that we do not define what a financial contract
“really is”: the approach is completely symbolic.

We write x : a to indicate that object x should
have type a. a is a type variable here, i.e., it can
stand for any type. A function with argument x is

2A translation into regular first-order logic is possible, too;
cf. Appendix A for details.

introduced by “λx.”. For example, λx. x+1 describes
the function that adds 1 to its argument. Following
the tradition of (Peyton Jones and Eber, 2005), we
write function application by juxtaposition, i.e. we
write f x y instead of f(x, y).

2 The Language of LPT

In this section, we describe the language of LPT.
We first describe our framework for observables (ele-
ments of market data) and then go on to describe how
financial contracts are expressed. The language pre-
sented here is a modification of the contract language
by Peyton Jones and Eber (2005).

We assume that elementary types such as Real (real
numbers), Real+ (non-negative real numbers), and
Bool (boolean values True and False) are given exter-
nally, together with constant symbols such as 0 : Real+

or True : Bool and operations like (+) : Real×Real→
Real or if ... then ... else ... : Bool×a×a→ a. We
assume that axioms are provided to have these types
match their expected meaning. In addition, let a type
Time (points in time) be given together with a linear
ordering. The axioms of LPT do not enforce a specific
layout for the Time type: models could implement
Time as {1, ... , T}, N, or R.

2.1 Observables: Formalizing Market
Data

Derivatives typically refer to elements of market
data in their definition. For example, the assets A and
B described in the introduction referred to a stock
price. In more abstract terms, contracts can refer to
time-varying quantities the past of which is known, but
the future is uncertain, and which we call observables.
If a is a type, then the type of observables taking

values in a is denoted by Obs a. For example, Obs Real
is the type of numeric time-varying quantities. Stock
prices and interest rates cannot be negative and are
thus of type Obs Real+. Obs Bool denotes market
conditions that are True or False at any point in
time. Obs Bool will have a distinguished role in the
framework.
A useful intuition for an observable is a “stream of

values”. For example, an object of type Obs Real can
be interpreted as a stream of real numbers where mar-
ket participants have access to the history of previous
numbers, but of course not to the future. Note that
this is neither the same as a single real number (i.e.,
an object of type Real) nor a function Time→ Real

(which would allow access to both the past and the
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return : a→ Obs a
For x : a, the observable return x : Obs a has
the value x at any point in time.

(�=) : Obs a× (a→ Obs b)→ Obs b
For an observable o : Obs a and a function
f : a → Obs b, the value of the observable
o�= f at any point in time is obtained as fol-
lows: take the current value of o and call it x.
x has type a. Then take the current value of
f x : Obs b to obtain the final result of type b.
(�=) is called bind .

now : Obs Time

now always has as its value the current point in
time.

ever : Obs Bool→ Obs Bool

At any point in time, ever b is true if b is true
or if it has ever been true since the beginning
of time.

always : Obs Bool→ Obs Bool

At any point in time, always b is true if b is true
and it has always been true since the beginning
of time.

Figure 1: Elementary operations on observables. a and b are arbitrary types.

future).
Consider Figure 1 for the elementary operations we

introduce on observables together with their intended
interpretations. The axioms for observables (found
in Appendix B) aim to be minimal while formalizing
these intended interpretations. They consist of the
laws of the monad design pattern (Wadler, 1992) plus
three additional axioms. The axioms for the temporal
operators now, ever, and always consist of a transla-
tion of the modal logic S4.3 (Blackburn et al., 2001,
p. 189) plus additional axioms for now.

Lifts. We can lift operations on elementary types
to observables. For example, we can lift the operator
(+) : Real× Real→ Real to

(+) : Obs Real× Obs Real→ Obs Real

o1 + o2 := o1�= λx1. o2�= λx2. return (x1 + x2).

The formal definition of o1 + o2 translates to English
as follows: “the value of the observable o1 + o2 is at
any point in time obtained by taking the current value
of o1 and calling it x1, then taking the current value
of o2 and calling it x2, then returning x1 + x2.”
It is clear that the technique generalizes to func-

tions of any type, so we can lift the operator (<) to
receive (o1 < o2) : Obs Bool, the observable that is
True whenever the value of o1 is below the value of o2.
We further receive lifts of boolean operators like (∧),
(¬) or implication (→) to Obs Bool.

Temporal Operators. Contracts may refer to not
only the current value, but also to the history of an
observable. For example, a contract might prescribe
a payment in case an interest rate r : Obs Real+ has
been below 2% for at least 2 months. This condition
can be expressed using the temporal operators ever

and always as

now�= λ t. always ((now ≥ t− 2M)→ r < 2%).

In English, this means: “call the current point in time
t. Then check if it has always been the case that at
most 2 months before t, r < 2%.”
The transition from a to Obs a is similar to the

method of temporalization (Finger and Gabbay, 1992),
but the approach is different: while temporalization
defines two distinct layers (an underlying logic and the
temporal dimension), the theory of observables only
defines a single class of types Obs a where the nesting
order of ever, always, and (�=) describes the times
at which the values of observables are considered.

2.2 Building Contracts

A financial contract specifies the rights and obli-
gations of its two counterparties, the holder and the
writer . In the language of LPT, contracts are always
described from the point of view of the holder. The
situation of the writer is exactly reversed and is not
modeled explicitly. The type of contracts is denoted
by Contract.

Market participants acquire, i.e., enter into contracts.
Acquisition is the only notion modeled in LPT because
it is the most fundamental. For example, “buying” a
contract x for price p can be expressed as acquiring
the compound contract where the holder pays p and
acquires x.

Consider Figure 2 for the elementary operations we
introduce on contracts together with their intended
interpretations. In comparison to (Peyton Jones and
Eber, 2005), we add the powerful primitives (�=) (for
observables) and ( ) (for contracts), which in turn
allows us to keep the remaining operations simple.
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0 : Contract
The empty contract, stating no rights or obliga-
tions.

one : Contract
The contract one immediately pays a single unit
of currency to the holder on acquisition.
For the sake of simplicity, we do not model
different currencies, but the framework can be
easily extended to allow for them.

(+) : Contract× Contract→ Contract

Acquiring x+ y obliges the holder to immedi-
ately acquire both x and y. We also say that
the holder acquires the portfolio consisting of x
and y.

(−) : Contract→ Contract

The contract −x is like x, but with the writer
and the holder sides interchanged. This means
that the rights of x are obligations of −x and
all payments change signs. We write x− y for
x+ (−y).

(·) : Real+ × Contract→ Contract

For α : Real+, α ·x is like x where all payments
are scaled by a factor of α.

(∨) : Contract× Contract→ Contract

A market participant acquiring x ∨ y must

choose to acquire immediately one of x or y
(but not both or none).

when : Obs Bool× Contract→ Contract

Acquiring when b x obliges the holder to acquire
x as soon as ever b becomes true. This means
that if b has ever been true before, then x is ac-
quired immediately and otherwise, x is acquired
the first time b becomes true.
While this first time might not exist for patho-
logical cases in continuous time, the considera-
tions in this paper hold in any case.

anytime : Contract→ Contract

The contract anytime x grants to the holder the
right to acquire x at any time in the future, or
never at all. This is called exerting the option.
Typically, x is defined in such a way that it
becomes worthless at a specified point in time,
so that exertion is not reasonable indefinitely.

( ) : Obs a× (a→ Contract)→ Contract

If a is a type, o : Obs a, and f : a→ Contract

is a function, then a market participant acquir-
ing o f must immediately acquire f α where
α is the value of o at the time of acquisition.
( ) can be seen as a Contract-variant of (�=)
and is called contract bind .

Figure 2: Elementary operations on contracts. Let x, y : Contract.

This is important to receive axioms of manageable
complexity later. We also modify the interpretation of
the when primitive, for the same reason.

Dynamic Payments. Obs Real embeds into
Contract via the function

money : Obs Real→ Contract

money o := o λα. if (α ≥ 0)

then (α · one) else ((−α) · (−one)).

When a market participant acquires money o, the cur-
rent value of the observable o, called α, is considered.
If this value is positive, then the market participant
receives an amount of α, otherwise she has to pay −α.

Zero Coupon Bonds. Perhaps the simplest class
of non-trivial contracts are so-called zero-coupon bonds
(ZCBs): such a contract just grants the holder the
right to receive a specified amount of money at a fixed

time T . We define

zcb : Real+ × Time→ Contract

zcb α T := when (now = T ) (α · one)

From now on, we just write α for α · one.

European Options. For x : Contract, b :
Obs Bool, and K : Real+, we can define the Euro-
pean call option Cx,K,b with underlying x, strike price
K, and maturity b. This contract gives the holder the
right, but not the obligation, to buy the contract x for
price K as soon as b becomes true. The European put
option Px,K,b gives the holder the right to sell x for K
instead. Formally:

Cx,K,b := when b ((x−K) ∨ 0)

Px,K,b := when b ((K − x) ∨ 0)

Most of the finance literature would assume a fixed
maturity, i.e., b = (now = T ) for some T : Time, and
then go on to discuss different alternatives for the
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underlying x separately, such as stock options (x is a
stock price), bond options (x is a ZCB), or compound
options (x is another option). LPT enables us to talk
about all these financial instruments at a general level.

Conditional Acquisition. We define the helper
function cond as follows: if b : Obs Bool, and x, y :
Contract, then write

cond b x y := b λβ. if β then x else y

for the contract that obliges the holder to acquire
either x or y based on whether the condition b is true
at the moment of acquisition. cond is an if-then-else
construction for contracts.

Barrier Option. The following gives an example
for a more exotic kind of option. Let o : Obs Real+

and let K : Real+ and b : Obs Bool like above. Let
B : Real+. The up-and-out barrier option is like a
European call on x := money o, except for that the
option becomes void if the underlying observable o
touches the barrier B between acquisition and maturity.
The barrier option can be expressed as

now λ t. when b
(

cond
(
ever (now ≥ t ∧ o ≥ B)

)
0
(
(x−K) ∨ 0

))
.

3 The Axiomatic Description
of the Arbitrage Relation

Having set up the language of observables and con-
tracts, we now present our main contribution: the ax-
iomatic description of the arbitrage relation. Introduce
a new relational symbol (� · ) where for x, y : Contract
and b : Obs Bool we write

x �b y

to mean that y is preferable to x in arbitrage under
conditions b. This means that at any point in time
where b is true there is a trading strategy by which a
holder of y−x arrives at a position where she does not
run at a risk of losing money. We will see in Section 4
that this implies that whenever b holds, the price of x
must below or equal to the price of y, if prices exist.
The ordering (�b) is partial : not any two contracts
can be compared in general.
We define a few variants of the arbitrage relation.

Let > = return True and ⊥ = return False. For
b, c : Obs Bool write b⇒ c to mean that (b→ c) = >.
Write

x ≈b y if x �b y and y �b x. We say that x is
equivalent in arbitrage to y under conditions b.

x ≺b y if x �b y and for all c : Obs Bool with c⇒ b
and c 6= ⊥ we have x 6�c y. This means that y is
preferable to x under b and no condition that is
compatible with b can make them equivalent, i.e.,
b guarantees that they are not equivalent. We say
that y is strictly preferable in arbitrage to x under
conditions b.

x � y if x �> y, i.e., y is preferable to x uncondition-
ally. Define (≈) and (≺) equivalently.

Consider Figure 3 for the axioms we require for the
arbitrage relation. The axioms can be seen as the
fundamental arbitrage strategies. We describe some
of them in detail.

Logic. Axioms 1 and 2 state that each relation (�b)
should be a partial order. Axioms 3–5 ensure that our
notion of the b parameter as “under conditions b” is ac-
tually sensible: whatever holds under weak conditions
also holds under stronger conditions (Axiom 3), we
can perform case distinction on conditions (Axiom 4),
and anything holds under conditions which are never
true (Axiom 5).

Inverse to Portfolio Construction. Axiom 10
states that a portfolio consisting of both the holder
and the writer positions in two copies of the same
contract is equivalent to having no contract at all. The
strategy to achieve 0 payout from x−x is to reflect any
choice a counterparty makes in the opposite contract
and forward any incoming payments from one position
to the other position.

Delay. To understand Axiom 25, consider a market
participant who is holder in when c y and writer in
when b x. As time passes, one of the two events b or c
will happen first and depending on that, the market
participant would end up being either holder in x and
writer in when c y under conditions b (if b happens first)
or holder in when b x and writer in y under conditions
c (if c happens first). The axiom requires that she can
arrive at a risk-free position in both cases.

Equivalence of Currency and Numbers. Ax-
iom 17 states a seemingly trivial property: receiving α
dollars and β dollars is the same as receiving α+β dol-
lars. Note however that the statement is wrong if one
replaces one by a general contract x. That is because
if x grants the holder a choice via (∨) or anytime,
then the left-hand side of Axiom 17 would allow two
independent choices while the right-hand side would
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# Group Informal Formal

1 Logic Partial order x �b x
2 If x �b y �b z, then x �b z
3 Conditions If b⇒ c and x �c y, then x �b y
4 If x �b y and x �c y, then x �b∨c y
5 x �⊥ y

6 Payment (one) Positive value of currency one � 0

7 Portfolio
construction (+)

Associativity (x+ y) + z ≈ x+ (y + z)

8 Commutativity x+ y ≈ y + x

9 Neutrality of 0 x+ 0 ≈ x

10 Inverse x− x ≈ 0

11 Monotonicity If x �b y, then x+ z �b y + z

12 Scaling (·) Scaling portfolios α · (x+ y) ≈ α · x+ α · y
13 Representation of

Real+-multiplication

α · (β · x) ≈ (α · β) · x
14 0 · x ≈ 0

15 1 · x ≈ x

16 Monotonicity If x �b y, then α · x �b α · y
17 Equivalence of currency and

numbers

α · one+ β · one ≈ (α+ β) · one

19 Choice (∨) Reduction to x or y x ∨ y � x and x ∨ y � y

20 Minimality If z �b x and z �b y, then z �b x ∨ y

21 Delay (when) Compatibility with portfolio
construction and scaling

when b 0 ≈ 0

22 when b (x+ y) ≈ when b x+ when b y

23 when b (α · x) ≈ α · when b x
24 Reduction case when b x ≈ever b x

25 Non-reduction case If x �d∧b when c y and when b x �d∧c y, then
when b x �d∧¬ever b∧¬ever c when c y

26 Time choice
(anytime)

Reduction to exertion anytime x � x

27 Reduction to delayed choice anytime x � when b (anytime x)

28 Minimality If z �d x and z �d when b z for any b, then
z �d anytime x

29 Dynamics ( ) Binding return return α f ≈ f α

30 Per-value analysis If f α �b∧o=α∧p=β g β for any α and β, then
o f �b p g

Figure 3: Axioms for the arbitrage relation. Axioms are grouped conceptually.
Let x, y, z : Contract, b, c : Obs Bool, and α, β : Real+. Let d : Obs Bool be of form d = ever d′.
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allow only one, and having separate choices might be
strictly preferable. In consequence, Contract does not
in general form a Real-vector space with (·).

Choice and Time Choice. Axioms 19 and 20 char-
acterize x ∨ y as the join of x and y: it is the unique
minimal contract that is preferable to both x and y in
arbitrage.
anytime x is characterized similarly as the minimal

contract that allows exerting the option (Axiom 26)
and postponing it until some future event (Axiom 27).
Discarding the option is already contained in the ax-
ioms as postponing until ⊥.

Discussion of Design Choices

We would like to point out some design choices.
Axioms needed to be chosen strong enough such that
one can show the statements that were seen to be
true in prior work, yet they must not include any
assumptions beyond arbitrage-freeness.
One challenge was the correct axiomatization of

when in the non-reduction case (Axiom 25). An early
candidate for an axiom was the “collapse rule”

when b (when c x) ≈ when (ever b ∧ ever c) x.

This equation follows from the axioms and has a very
elegant form, but it turned out to be too weak as an
axiom: we need to take into account the exact timing
as explained above. Isolating Axiom 25 as the core
property of when is a result of many revisions of the
framework.
Further attention has to be paid to the intricate

details of the primitives when and anytime: for exam-
ple, d in axioms 25 and 28 must have the property
d = ever d: it is a condition that stays true over the
lifetime of the contract if it is true at acquisition. At
the same time, requiring this property for the b and c
parameters in Axiom 25 would make this axiom too
weak.

Having the condition b in (�b) is not just a useful
feature of the framework, but also crucially required
to be able to argue about when and ( ) via axioms 24,
25, and 30. In Axiom 30, the condition o = α ∧ p = β
allows proofs to make a case distinction over all possible
values of o and p. The way the axiom is formulated
automatically excludes pairs of values o and p cannot
take: then the condition is ⊥ and the precondition is
trivially fulfilled.

Further important steps in the development of LPT
were identifying the role of Obs Bool as conditions in
the arbitrage relation, the axiomatization of anytime

as the minimum of certain contracts and the introduc-
tion of the primitive ( ).

4 Prices

Contemporary market models and simulation meth-
ods are concerned primarily with the goal of computing
the fair price of a contract while LPT focuses on the
arbitrage relation and does not have any built-in no-
tion of a price. Fortunately, users don’t have to decide:
LPT can be used to argue about prices as part of the
theory.
We define the price of a contract as an equivalent

in arbitrage amount of money:

Definition 4.1. If x : Contract and o : Obs Real,
then o is called a price for x if

x ≈ money o.

If b : Obs Bool, then o is called a price for x under
conditions b if x ≈b money o.

We do not claim that every contract has a price!
In probabilistic models of LPT, many or all contracts
have a price, while in the cash flow model (Section 6),
very few do.

The following theorem constitutes a generalization
of what is known as the law of one price in the finance
literature. It states that prices of contracts, when they
exist, must behave according to (�·).

Theorem 4.2 (Generalized Law of One Price). Let
b : Obs Bool. Let x, y : Contract. Let o, p : Obs Real

be prices for x and y, respectively, under conditions b.
Then the following conditions are equivalent:

1. x �b y.
2. b⇒ (o ≤ p)

The equivalence also holds for strict inequalities, i.e.,
if one replaces (�b) by (≺b) and (≤) by (<).

The proof of the theorem can be found in Ap-
pendix C.
The theorem opens up an important application

for LPT, namely computing bounds on prices: in a
model of LPT, we might be interested in the fair price
of a contract x, but it might be analytically difficult
or computationally expensive to compute. If we find
another contract y the price of which we know and
we can show x � y, then we know that the price of
x can be at most the price of y. Depending on the
application, this might be all we need.

As a special case, Theorem 4.2 implies the classical
law of one price: if x ≈ y, then o = p. That is,
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equivalent contracts must trade for the same price. In
particular, prices are unique if they exist.
A second theorem (omitted) shows that the oper-

ations 0, one, (+), (−), (∨), and ( ) on contracts
translate into the operations return 0, return 1, (+),
(−), max, and (�=) on prices, respectively. Thus, the
operations that introduce complexity in models are
when and anytime.

5 Well-Known No-Arbitrage
Relationships in LPT

We will now prove formally in LPT the two perhaps
best known no-arbitrage relationships: the put-call
parity for European options and Merton’s theorem on
the equivalence of European and American call options.
By LPT’s unique level of abstraction, we receive more
general and stronger versions of these theorems than
stated in prior work.
Traditionally, no-arbitrage relationships have been

stated in terms of prices, but we can state them directly
in terms of contracts. We know by Theorem 4.2 that
statements about contracts carry to statements about
prices for models that have them.

5.1 European Options, Put-Call
Parity

Perhaps the best known no-arbitrage relationship is
the put-call parity on European options. Recap from
Section 2.2 that a European call Cx,K,b grants the
holder the right to buy the underlying x for strike K at
maturity b and a European put Px,K,b grants the right
to sell. The put-call parity states that if the underlying
is a dividend-free stock , then the (price of the) portfolio
consisting of a European put and its underlying equals
the (price of the) portfolio consisting of a European
call and a ZCB on the strike at maturity. We postpone
the discussion of what exactly a “dividend-free stock”
is supposed to be. Instead, LPT can help us derive
a condition on x equivalent to the put-call parity:
the following theorem shows that the put-call parity
holds for a triple (x,K, b) iff when b x ≈ x, i.e., iff a
market participant is indifferent between acquiring x
immediately or at maturity of the option.

Theorem 5.1 (Generalized Put-Call Parity). Let
x : Contract, b : Obs Bool, and K : Real+. The
following are equivalent:

1. Px,K,b + x ≈ Cx,K,b + when b K

2. x ≈ when b x

Proof. (1) is equivalent to

x ≈ Cx,K,b − Px,K,b + when b K

= when b ((x−K) ∨ 0)− when b ((K − x) ∨ 0)

+when b K

≈ when b (((x−K) ∨ 0)− ((K − x) ∨ 0) +K).

The last line is by Axiom 22. It now suffices to show
that the contract in parentheses on the last line is
equivalent in arbitrage to x. The proof is given in
Appendix D.

In the literature, the put-call parity is typically con-
sidered for options with fixed maturities b = (now = T ),
so the term dividend-free stock should refer to contracts
where condition 2 is always fulfilled for these b:

Definition 5.2 (Dividend-Free Stock). A contract x
is called a dividend-free stock if x ≈ when (now = T ) x
for any T : Time.

The above condition does not state that there is no
interest; it rather says that interest is already included
in x. The following are examples for dividend-free
stocks:

1. In a probabilistic model where contracts are com-
pared based on their expected payout, we can
consider an actual stock that does not include any
payments to the owner (hence the name “dividend-
free”), represented by its stock price o : Obs Real+.
In this case, the condition x ≈ when (now = T ) x
means that the expected growth of x is exactly
the risk-free interest rate at which money can be
borrowed or lent in the economy. This in turn
means that o can be written as a martingale pro-
cess plus a drift, which is indeed how stock prices
are commonly modeled (Björk, 2004). It is thus
no surprise that the put-call parity is best known
for the case where the underlying is a stock.

2. A claim on an amount that grows deterministically
(rather than in expectation) with the risk-free rate
is a dividend-free stock.

3. If x is a ZCB, a European option with a fixed
maturity, or any other contract that pays certain
amounts of money (perhaps dependent on observ-
ables) at a point in time not earlier than T , then
we receive the put-call parity for b = (now = T ).
This consideration also yields a no-arbitrage re-
lationship between financial products called caps
and floors (essentially options on an interest rate)
that is known as the cap-floor parity .
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5.2 American Options, Merton’s
Theorem

We next turn to American options. These are like
European options, but also allow exertion at any point
before maturity. It is clear that American options are
preferable to European options because they grant
more rights to the holder. An at first sight surprising
result that is sometimes attributed to Robert C. Mer-
ton states that under mild assumptions, they are in
fact equivalent to European options, i.e., the right for
early exertion does not give any advantage.
We first define some helper functions. For y :

Contract and b : Obs Bool define

american b y := anytime (cond (earlier b) 0 y)

earlier b := now�= λ t. ever (now < t ∧ b).

american b y is like anytime y, but exertion is only
possible until and including the first occurrence of b.
Now, for x : Contract, K : Real+, and b : Obs Bool,
define the American call- and put options

Cx,K,b := american b ((x−K) ∨ 0)

Px,K,b := american b ((K − x) ∨ 0).

Fix an observable b : Obs Bool such that

ever b = ever (b ∧ ¬earlier b). (1)

This means that there is always a “first” time b is
true, and thus a “last” time where an American option
can be exercised. The property is needed to exclude
pathological cases if time is continuous.
Assume further non-negative interest rates. This

means that receiving a fixed amount of money imme-
diately is always preferable to receiving it later. In the
language of LPT, this is expressed as one � when b one
for all b : Obs Bool or, equivalently,

one ≈ anytime one.

Under these assumptions, we receive a version of
Merton’s theorem for arbitrary contracts that satisfy
the “�” part of condition 2 from the put-call parity:

Theorem 5.3 (Generalized Merton’s Theorem). As-
sume non-negative interest rates. Let b : Obs Bool

satisfy equation (1). Let x : Contract be such that
x � when b x. Let K : Real+. Then

Cx,K,b � Cx,K,b.

Proof Outline (full proof in Appendix D.2). Let y =
0 ∨ (x−K). We need to show that

american b y � when b y. (2)

We first show that y � when b y. This follows from
the fact that x � when b x by assumption and −K �
−when b K by non-negative interest rates.
Now (2) follows because the early exertion right of

american b does not give an advantage over when b be-
cause exertion at b is preferable anyways. Formally, we
show that american b y � american b (when b y) ≈
when b y.

Like the put-call parity, our version of Merton’s
theorem applies to the whole class of contracts LPT
considers dividend-free stocks. Notice that for fixed
maturities b = (now = T ), condition (1) is always ful-
filled. Also recap from the previous section that the
put-call parity is equivalent to x ≈ when b x. Thus,
under non-negative interest rates and for b satisfying
(1), the put-call parity implies Merton’s theorem.

6 Models

LPT was designed with the goal of describing the re-
lationships between contracts that hold in all arbitrage-
free market models. In this section, we describe two
such models of LPT.

6.1 Finite Tree Models

Finite tree models are probabilistic models where
time is finite of form {1, ... , T} and the set of possible
states of nature at each point in time is also finite, so
that the possible histories form a finite tree. Observ-
ables are implemented as stochastic processes on this
tree.
Contract is implemented like Obs Real, i.e., every

contract has a price and is in fact equal to its own
price. The elementary operations correspond to com-
putation of the expected payment from a contract.
The operations 0, one, (+), (−), and (∨) are lifts of
the corresponding operations on real numbers. when
and anytime are defined recursively starting at the
final time T . A contract y is considered preferable to
a contract x under conditions b if its price is always
greater or equal to the price of x in states of nature
where b is True. Thus, this model describes stochastic
arbitrage.

A special case is the CRR market model by Cox et al.
(1979) where the tree is recombinant, which reduces
the time needed to compute prices. Peyton Jones and
Eber (2005) sketch a finite tree model as a possible
implementation of their language, too.

The mere existence of a model implies:

Corollary 6.1. LPT is consistent.
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6.2 The Cash Flow Model

The cash flow model is a nonstochastic model where
a contract is identified with the set of cash flows it can
generate. A contract y is only considered preferable
to a contract x if choices in y can be made such that
it generates the same or higher cash flows than x at
exactly the same points in time. Consequently, this
model only has the trivial prices (for contracts of form
money o). Both finite and countably infinite time are
supported.
In detail, we consider a (possibly infinite) tree of

states of nature, but without an associated probability
measure. Observables are implemented as processes
on this tree. In contrast to the finite tree model,
a contract is defined by a recursive structure more
complex than an observable: every contract specifies
a tree that represents choices to the holder and the
writer about a) which payments are made at the time
of acquisition and b) which contract is acquired in the
following time step. The arbitrage relation is defined
by comparing payments at all time steps. Thus, this
model describes deterministic arbitrage. Care has to
be taken to exclude irrational choices such as choosing
0 in the contract 0 ∨ one.

A similar model was described by Gaillourdet (2011)
for a language without the (−) primitive, which greatly
reduces expressiveness of the language and makes for a
much simpler construction. Bahr et al. (2015) proposed
another cash flow model that does however not exclude
irrational choices. To the best of our knowledge, we
are the first to describe a cash flow model that takes
both aspects into account and that supports infinite
time. A detailed description of the cash flow model
can be found in Appendix E.

7 Conclusion and Outlook

We have introduced LPT , the Logic Portfolio Theory
of arbitrage-free financial derivatives markets. LPT al-
lows users to express a large class of financial derivative
contracts using a small set of elementary operations.
The axioms of LPT relate contracts by the arbitrage
relation, i.e., under which conditions one contract can-
not sell cheaper than another since that would give
rise to an arbitrage opportunity. Our approach is
novel in that financial contracts, rather than prices,
are first-class objects, allowing us to reason about gen-
eral financial contracts at the level of their defining
elementary operations.

We have shown that LPT is powerful enough to cap-
ture well-known no-arbitrage relationships and extend

them to more general forms, that it is consistent, and
that it is compatible with a classical and a new model
of financial markets.

Models of LPT display a rich collection of intercon-
nected mathematical structures, including a boolean
algebra with modal operations (Obs Bool, (⇒), ever,
always), a filtration of partial orders (�·), a monad
(Obs a), as well as interesting structure-preserving
maps (money, elementary contract operations). Fu-
ture work should explore the consequences of these
interactions for the model theory of LPT.
We envision that LPT could be used as the basis

of a software product to help investment banks better
understand the relationships between their contractual
commitments or to transform contracts into equivalent
forms to speed up the computation of prices. LexiFi
(2004–2014) have demonstrated with MLFi, a commer-
cial product based on (Peyton Jones and Eber, 2005),
that a language-centered approach can be extremely
beneficial in this domain.
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Appendix

A A First-Order Version of LPT

LPT is presented as a theory with higher-order functions, but we can also consider a translation LPT1

into first-order logic with countably infinitely many symbols and axioms. This is possible because the
axioms of LPT (Section 3 and Appendix B) have a particularly simple structure: variables of functional
type are only quantified over universally and only at the top level. (note that quantification is implicit in
the presentation of the axioms)

Language The language of LPT1 is defined by a recursive process as follows:

• Start with the symbols of LPT that have a first-order type. These are all symbols except for (�=)
and ( ).

• For any two types a and b and any functional term f : a→ Obs b that can be formed by the symbols
defined so far, add a symbol (�=f ) : Obs a→ Obs b. Proceed analogously for ( ).

• Repeat indefinitely. The set of symbols of LPT1 is the union of the ω-many stages.

A term in the language of LPT that contains an application of a higher-order function can now be
translated to a first-order term in the language of LPT1 by recursively following the same process, using
the fact that terms have finite length.

Axioms The axioms of LPT1 are obtained as follows:

• All axioms of LPT that do not include a variable of functional type are axioms of LPT1.

• For each axiom with a functional variable f and each functional term f̃ in the language of LPT of
appropriate type, an axiom of LPT1 arises by replacing f by the translation of f̃ into the language
of LPT1 in the axiom.

For example, Axiom 29 becomes (
 f̂

)
(return α) ≈ f̂α

where a is some type, f̃ : a→ Con is a functional term of LPT, f̂ is the translation of f̃ into LPT1,
and f̂α is the translation of the term f̃ where the parameter of f̃ has been replaced by α.

One checks that all statements and proofs from this paper only use either universal or concrete functions
as arguments to higher-order functions. Hence, all these proofs can be carried out in LPT1.

B Axioms for Observables

B.1 Monad laws; observable laws

The laws in this section describe the behavior of the (�=) and return primitives. They ensure that
e.g. the commutativity of (+) on numbers implies the commutativity of the lift of (+) to observables.
We first require the standard Monad laws.3

For o : Obs a, x : a, f : a→ Obs b and g : b→ Obs c we require the following:

o�= return = o : Obs a (Mo1)

return x�= f = f x : Obs b (Mo2)

(o�= f)�= g = o�= (λx. f x�= g) : Obs c (Mo3)

These are easily justified from the intuition of a “stream of values”.

3The laws can be found e.g. in (Wadler, 1992).
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We need additional axioms to ensure that Obs does not have side effects. These concern only lifts, so
we define functions for unary and binary lifts:

lift1 : (a→ b)× Obs a→ Obs b

lift1go := o�= λx. return (g x)

lift2 : (a× b→ c)× Obs a× Obs b→ Obs c

lift2 h o1 o2 := o1�= λx1. o2�= λx2. return (h x1 x2)

We now require the following:

lift2 h o1 o2 = lift2 (λx y. h y x) o2 o1 (Ob1)

lift2 h o o = lift1(λx. h x x)o (Ob2)

lift1(λ y. x)o = return x (Ob3)

The first axiom states that the order of evaluation does not matter for observables. The second states
that observables yield the same value each time they are read (at the same point in time). Finally, the
third axiom states that observables the values of which are not used can be omitted.

One can see that this second set of axioms implies that observables can generally be reordered arbitrarily
in chains of (�=).
To see that axioms Ob1–Ob3 do not follow from the monad laws, note that all axioms fail for the

State monad (carrying mutable state, cf. (Wadler, 1992)).

B.2 ever and always

The primitives ever, always, and now give to the theory of observables a notion of time.
For ever and always, we notice a similarity between expressions of type Obs Bool and modal logic if

we write � = always, ♦ = ever, and use the (⇒) relation on Obs Bool for implication. A modal logic
that is sometimes used for the “ever”/“always” relation is S4.3 (cf. (Blackburn et al., 2001, p. 189 ff.)),
the translation of which to Obs Bool is requiring that the following observables be equal to >:

always (b→ c)→ (always b→ always c) (K)

ever b↔ ¬always ¬b (Dual)

always > (Gen)

ever (ever b)→ ever b (4)

b→ ever b (T)

ever b ∧ ever c→ (ever (b ∧ ever c) ∨ ever (ever b ∧ c)) (.3)

Here, (K), (Dual) and (Gen) are exactly the axioms for a normal modal logic, i.e., one that is realized
through a “many worlds” interpretation (Kripke frames), and axioms (4), (T), and (.3) axiomatize
transitivity, reflexivity and linearity into the past4 of the visibility relation “past states of the world”,
respectively.

B.3 now

The following axioms state that the now observable essentially reflects the Time type. They are easily
verified by intuition. Let t : Time and b : Obs Bool. Then

ever (now = t) = now ≥ t (3)

ever (now = t ∧ b)⇒ always (now = t→ b) (4)

(now�= λ t. always (now ≤ t)) = >. (5)

4(.3) does not state that the visibility relation be linear: any two past points in time must be related, but two future
states may be unrelated. A model where the former holds, but the latter does not is where the states of the world are the
nodes of a tree.
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The “⇒” direction of Axiom (3) states that now is monotonically increasing. To see that intuitively,
let t be some previous value of now. Then ever (now = t) is true, hence the current value of now is ≥ t.
The other direction states that any previous point in time as of the Time type did actually exist.

Axiom (4) essentially states that now is strictly increasing in time: any value of now fixes all possible
conditions of type Obs Bool: nothing may change while the value of now stays the same. Another point
of view is that if time is discrete, then now must have the highest granularity.
(5) is essentially a monadic variant of (3). It has to be stated explicitly due to formal restrictions.

C Proof of Theorem 4.2

We first show that the statement holds for constant amounts of money.

Lemma C.1. Let α, β : Real+. The following statements are equivalent:

1. α · one�bβ · one for some b 6= ⊥.
2. α · one � β · one.
3. α ≤ β.

The equivalence also holds for strict inequalities.

Proof. (2 ⇒ 1) is trivial.
(3 ⇒ 2): There is nothing to show for α = β, so assume α < β, i.e., β −α > 0. As ((β − α)·) preserves

“≺” and one � 0 by Axiom 6, (β − α) · one � (β − α) · 0 ≈ 0. Now

α · one ≈ α · one+ 0

≺ α · one+ (β − α) · one
≈ (α+ β − α) · one
= β · one

where the second relation is because ((α · one)+) is an isomorphism 0 ≺ (β − α) · one and the third
relation is due to Axiom 17.

(1 ⇒ 3): If α 6≤ β, i.e., β < α, then by (3 ⇒ 2), β · one ≺ α · one. In particular, by definition of “≺”,
α · one 6�b β · one.
If α 6< β, i.e., β ≤ α, then again by (3 ⇒ 2), β · one � α · one. In particular, β · one �b α · one, so

α · one 6≺b β · one.

Corollary C.2. Lemma C.1 still holds if one allows α, β : Real instead of only Real+ where

α · one := (−α) · (−one) = −((−α) · one) if α < 0.

Proof. The proof is a simple case distinction on the signs of α and β. The only interesting remaining
case is α < 0 ≤ β (or its symmetric variants). Then

α · one = −((−α) · one) ≺ 0 � β · one

as required.

Now we can generalize the result of corollary C.2 to observables. The following statement is equivalent
to Theorem 4.2.

Proposition C.3 (Law of One Price, Generalized Version). Let o, p : Obs Real. Then the following
conditions are equivalent for any b : Obs Bool:

1. money o �b money p.
2. b⇒ (o ≤ p)
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The equivalence also holds for strict inequalities, i.e., if one replaces (�b) by (≺b) and (≤) by (<).

Proof. First consider the “≤” variant:
we have

money o �b money p
⇔ ∀α, β : α · one �b∧o=α∧p=β β · one.
⇔ ∀α, β : ((b ∧ o = α ∧ p = β) = ⊥) or α ≤ β
⇔ ∀α, β : ((o, p) = (α, β))⇒ (b→ α ≤ β)

where the first equivalence is a consequence of Axiom 30, the second is due to lemma C.1 and the third is
just transformation of boolean observables. Again via transformation of observables, one notices that the
last line is equivalent to

> = ((o, p)�= λ (α, β). b→ α ≤ β)
= b→ o ≤ p.

Now show the “<” variant:
By the (≤) part, d := (b ∧ o ≥ p) is the unique (⇒)-maximal boolean observable such that d⇒ b and

money o �d money p. So by definition of (≺b) we have

money o ≺b money p ⇔ d = ⊥ ⇔ b⇒ o < p.

D Proofs from Section 5

D.1 Proof of Theorem 5.1

We start with a small lemma:

Lemma D.1. For any x, y, z : Contract we have

x+ (y ∨ z) ≈ (x+ y) ∨ (x+ z).

Proof. We show that the LHS satisfies the universal property of (x+ y)∨ (x+ z): we have x+ (y ∨ z) �
x+ y since y ∨ z � y and by monotonicity of (+) (Axiom 11). Likewise for z.
For minimality, assume that w � (x+ y), (x+ z). Then also w − x � y, z and so w − x � y ∨ z and

w � x+ (y ∨ z).

Note that the lemma does not hold if one exchanges (∨) and (+).
We can now show the last remaining equivalence in the proof of Theorem 5.1.

Lemma D.2. For any x : Contract we have

(((x−K) ∨ 0)− ((K − x) ∨ 0) +K) ≈ x.

Note that the statement would be an simple case distinction if x and K were numbers and (∨) was
taking the maximum. To show it for LPT’s contracts, a few transformations are required.

Proof. By Lemma D.1, it follows that

(x−K) ∨ 0 ≈ (x ∨K)−K
(K − x) ∨ 0 ≈ (K ∨ x)− x

and so the above expression is equivalent in arbitrage to

((x ∨K)−K)− ((K ∨ x)− x) +K

≈ (x ∨K)−K − (K ∨ x) + x+K

≈ x.
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D.2 Proof of Theorem 5.3

For y : Contract and b : Obs Bool let

yb := cond (earlier b) 0 y,

so american b y = anytime yb.

Lemma D.3. Let y : Contract and b : Obs Bool fulfilling equation (1). Then

when b yb ≈¬earlier b when b y.

Proof. Define first b := b ∧ ¬earlier b. As b fulfills equation (1), we have ever b = ever (first b).
The statement is then equivalent to

when (first b) yb ≈¬earlier (first b) when (first b) y.

To see this for the condition, note that earlier b = earlier (ever b) = earlier (ever (first b)) =
earlier (first b).
By monotonicity of when (which follows easily from the axioms), it now suffices to show

yb ≈first b y,

which is clear by definition of yb since first b⇒ ¬earlier b.

Lemma D.4. Let y : Contract be such that 0 � y � when b y. Then

american b y � when b y.

Proof. Perform case distinction on > = earlier b ∨ ¬earlier b:
For earlier b, notice that y � 0 and hence also when b y � when b 0 ≈ 0. On the other hand,

yb ≈earlier b 0 and hence also american b y = anytime yb ≈earlier b 0 (via monotonicity. We have
earlier b = ever (earlier b).)
So consider ¬earlier b. By lemma D.3 and definition of american it suffices to show that

anytime yb � when b yb.

To that end, we use minimality of anytime (Axiom 28). One has to show the following:

1. when b yb � yb

2. when b yb � when c (when b yb) for all c : Obs Bool.

2 follows by collapsing of when.
1 follows from the assumption as follows: Do case distinction on > = ever b∨¬earlier b. For ever b,

the statement is trivial, so consider ¬earlier b.
Since we have y � 0, also y � yb (cf. definition of yb) and so

yb � y � when b y ≈¬earlier b when b yb

where the second relation is by assumption and the third is lemma D.3.

Proof of Theorem 5.3. Apply lemma D.4 to y = 0 ∨ (x−K). It only remains to show that the precondi-
tions to the lemma are satisfied, then the desired statement follows directly.
Non-negative interest rates imply that when b one � one. Hence

x−K � when b x− when b K ≈ when b (x−K).

By 0 ≈ when b 0 one then receives

0 ∨ (x−K) � when b 0 ∨ when b (x−K) � when b (0 ∨ (x−K))

where the last relation follows from the universal property of (∨) and the fact that when b is a monotonic
map (which follows easily from the axioms for when).
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E The cash flow model

We want a build an LPT model that has “as few as possible” arbitrage relations. To achieve this, we
want to model a contract as a system of cashflows. Two contracts should only be considered equal if
their cashflows are the same at any time, up to irrational choices.
For example, in this notion, we should receive

• one+ when (now = T ) one � one because the LHS generates an additional (positive) cashflow and
otherwise is equal to the RHS.

• one ∨ 0 ≈ one because while the LHS allows for one cashflow more, no rational trader would take
the 0 choice, and the two are otherwise equal.

• one and when (now = T ) 1one are incomparable under conditions weaker than now = T because the
generated cashflows happen at different points in time. This is a different way of saying that this
model does not have any interest rates.

E.1 Elementary types and observables

We use the standard model for the numeric types and model Time = N.
We take the simplest model of observables. Let St be any set, the set of “states of the world”. Let

Hist be the set of finite St-sequences and let FullHist be the set of infinite St-sequences. Then model

Obs a := Hist→ a,

i.e., an observable of type a is a function from Hist to a. Note how the current point in time is implicit
in the length of the history.
It should be easy to extend this very simple model of observables to stochastic processes if desired.

E.2 Boolean trees

For any set a let AOTree a be the set of trees of finite height, but with possibly infinitely many children
per node, where the leaves are elements of a and the inner nodes are labeled with either “∨” or “∧”. An
AOTree a is the syntax tree of an abstract boolean expression in a which uses only “∨” and “∧”.

The elements of AOTree a are called choice trees where a “∨” branching means that the holder has a
choice and a “∧” branching means that the writer has a choice.

E.3 Contracts

Now define Contract as the following recursive data type:

Contract := Obs (AOTree (R, Contract))

At any point in time, when acquired, a contract yields a choice structure the elements of which are pairs
(α, x′) where α is a payment (seen from the point of view of the holder, where positive payments are
incoming), and x′ is a subsequent contract, to be acquired at the next time step.
Note that the definition is not very succinct: The Contract for the next time step (acquired at time

≥ 1) contains again a description for time step 0, which would not be required. This will not be a problem
below.
Define the primitive building blocks for contracts as follows. We write “∨” and “∧” for the syntax

elements of AOTree. We write an additional pair of parentheses for the single-element tree. Some lifted
operations on AOTrees are defined below.
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0 := h 7→ ((0, 0))

one := h 7→ ((1, 0))

x+ y := h 7→ x(h) + y(h)

−x := h 7→ −x(h)
γ · x := h 7→ γ · x(h)
x ∨ y := h 7→ x(h) ∨ y(h)

when b x := h 7→

{
x(h) if (ever b)(h) = True

((0, when b x)) else

anytime x := h 7→ x(h) ∨ ((0, anytime x))

o f := o�= f

Define operations on AOTree (R, Contract) recursively as follows. Note that any recursion has to hit a
primitive case (i.e. a leaf) at some point as AOTrees have finite height. We only define the operations for
two children a and b here, but the definitions easily generalize.

a+ b :

(a ∨ b) + c := (a+ c) ∨ (b+ c)

(a ∧ b) + c := (a+ c) ∧ (b+ c)

Also add the two other versions symmetrically. One has to show that the result does not depend on
the ordering of decomposition, which is true up to “≈” as defined below.

The primitive case:

(α, x′) + (β, y′) := (α+ β, x′ + y′)

−a :

−(a ∨ b) := (−a) ∧ (−b)
−(a ∧ b) := (−a) ∨ (−b)
−(α, x′) := (−α,−x′)

Note how “∨” and “∧” are flipped in the two compound cases. This is why we need AOTree instead
of just a set.

γ · a : Nothing interesting here:

γ · (a ∨ b) := (γ · a ∨ γ · b)
γ · (a ∧ b) := (γ · a ∧ γ · b)
γ · (α, x′) := (γ · α, γ · x′)

Note that the definitions of the contract primitives are all recursive again and should hence be taken
as compact descriptions of certain infinite sequences/trees. Note that it suffices that we can compute any
prefix in finite time to make the entire sequence well-defined.

E.4 The arbitrage relation

Define:
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x �b y :⇔ ∀h ∈ Hist :

if b(h) = True, then x(h) ≤h y(h)

Here, x(h) and y(h) are of form AOTree (R, Contract) and the “≤h” relation is to be defined now.
“a ≤h b” should express that for any reasonable choice pattern of the holder and the writer, now and
in the future, the cashflow produced by b will always be at least as favorable to the holder (comparing
at each point in time separately) as that of a, assuming history h at acquisition. This also encodes the
acquisition time.
Following the structure of AOTree, one defines recursively:

a ∨ b ≤h c :⇔ a ≤h c and b ≤h c
a ∧ b ≤h c :⇔ a ≤h c or b ≤h c

c ≤h a ∨ b :⇔ c ≤h a or c ≤h b
c ≤h a ∧ b :⇔ c ≤h a and c ≤h b

These rules are easily justified intuitively. For example, to check c ≤h a ∨ b, one only has to check if
there is some choice by which the holder can be better than c, whereas in c ≤h a∧ b, we have to consider
all possible choices of the writer. Again, one needs to check that the order of deconstruction of the
compound expressions does not matter, which is easily doable.
For h ∈ Hist and s ∈ St define hs to be the finite sequence consisting of h with s appended at the

end. Now we would like to give the definition of the base case recursively by

(α, x′) ≤h (β, y′) :⇔ α ≤ β and ∀s ∈ St : x′(hs) ≤hs y′(hs). (6)

But this is not a definition! Intuitively, this recursive definition makes sense: We have to transform the
choice structure into logical relations and then check any two combinations of base cases by first checking
the payments (cash flows at that time) and performing a recursive check on the subsequent contracts and
any possible following state of the world. In finite time, this procedure terminates at some point and
we’re done, but in infinite time, it is clear that the above really didn’t define anything: Consider e.g.
the simple check 0 ≤h 0 where the 0 contract is defined as above as an endless stream of 0s. In order to
decide the base case, we’d have to check whether 0 ≤ 0 (which is true) and then whether 0 ≤hs 0 for any
s. — But that’s exactly what we want to know, just one time index later!

E.5 Fixing the arbitrage relation

The intuitive argument why 0 ≈ 0 should hold is that we will never hit a payment (in finite time)
where they are not equal. So let’s make this notion explicit!

Define for u ∈ N a new relation “≤hu” that is defined like “≤h”, except for when |h| ≥ u: Then a ≤hu b
is always true for any a and b. This is a well-defined relation as the recursion will always reach history
length u at some point and terminate.

Now re-define

a ≤h b :⇔ ∀u ∈ N : a ≤hu b.

It is easy to check that this definition indeed fulfills equation (6). So we found an “implementation” of
what can be understood as a recursive “specification”.

An alternative point of view is that “a ≤h b” in fact defines an abstract machine that receives a
H ∈ FullHist as an infinite input such that h is a prefix of H. In each step u, the machine checks
whether we can refute the claim that “a ≤h b” with the information available up to time u. If so, it
enters the FAILED state (terminates) and otherwise, it remains in the ACTIVE state. We say that a ≤h b
if the machine never terminates on any input, i.e. the claim cannot be refuted.
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E.6 Checking the axioms

Once the machinery of the model is set up, showing the axioms is surprisingly simple: to show that
an arbitrage relation holds, all one has to do is consider finite cases, i.e. one in a sense only has to do
an induction step. All the proofs of the axioms in the model are just formalizations of the intuitive
justifications that we gave in the paper.

For one � 0, one has to provide a counterexample to “one ≤h 0”, which is obviously given by the first
time step.
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