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Abstract

We study financial networks and reveal a new kind of systemic risk arising from
what we call default ambiguity, i.e., a situation where it is impossible to decide
which banks are in default. Specifically, we study the clearing problem: given a
network of banks interconnected by financial contracts, determine which banks
are in default and what percentage of their liabilities they can pay. Prior work by
Eisenberg and Noe (2001) and Rogers and Veraart (2013) has shown that when
banks can only enter into debt contracts with each other, then this problem always
has a unique maximal solution. We first prove that when banks can also enter into
credit default swaps (CDSs), the clearing problem may have no solution or multiple
conflicting solutions, thus leading to default ambiguity. We then derive sufficient
conditions on the network structure to eliminate these issues. Finally, we discuss
policy implications for the CDS market.
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1 Introduction

During the 1997 East Asia crisis, a large part of a network of interconnected firms in In-

donesia, South Korea, and Thailand was at risk of default (i.e., going into bankruptcy).1

As a result of the complexity of this network, regulators were facing a phenomenon we

call default ambiguity. As then World Bank chief economist Joseph Stiglitz describes it:

“Every firm owed money to every other firm. But [...] you couldn’t tell

whether they were bankrupt or not, because that depended on whether they

got paid money that was owed to them by other firms who might or might

not be in default, depending on whether the firms that owed them money

went bankrupt.” (Stiglitz, 2016)

In other words, default ambiguity is a situation where one cannot tell which banks

are in default. Stiglitz (2016) points out that this led to a paralysis (“it took years

to resolve it”), resulting in large welfare losses because banks’ resolution could not be

carried out quickly.

It may be intuitive to expect that default ambiguity can arise when the financial

authority only has imperfect information about banks’ contractual obligations. For

instance, Haldane (2009) described a related effect on asset prices in the 2008 financial

crisis. In this paper, we show that, remarkably, default ambiguity can also arise in a

perfect information setting, where the whole financial network is known to the financial

authority.

In the perfect information setting, default ambiguity can be studied in terms

of the clearing problem: given a network of banks (or other financial institutions)

interconnected by financial contracts, determine which banks are in default, and for the

defaulting banks what percentage of their liabilities they can still pay to their creditors

(i.e., we are looking for the recovery rate of each bank). Payments are assumed to be

simultaneous and in accordance with standard bankruptcy regulations as in Eisenberg

and Noe (2001). The banks’ assets may lose part of their value when banks default

(i.e., the banks incur default costs).

An interpretation of the clearing problem is that, in a financial crisis, a clearing

authority (e.g., a central bank) observes the whole network of contracts, seeks to solve

the clearing problem, and implements a solution (i.e., prescribes to each bank how much

it has to pay to every other bank). The clearing problem is challenging because banks

typically rely on payments they receive from other banks to meet their obligations

1Stiglitz (2002, p. 112) estimates that “[i]n Indonesia, [. . . ] 75 percent of all businesses were put
into distress, while in Thailand close to 50 percent of bank loans became nonperforming.”

2



and banks can form an intricate web of contractual relations with each other. Default

ambiguity arises when the clearing problem has no solution, or when there are multiple

conflicting solutions (i.e., none of which is simultaneously best for all banks).

Eisenberg and Noe (2001) and Rogers and Veraart (2013) showed that financial

networks where banks can only enter into simple debt contracts (i.e., loans from one

bank to another) have two very desirable properties from a clearing perspective: first,

the clearing problem always has a solution (we call this property existence). Second,

there is always a solution that maximizes the equity of each bank simultaneously (we

call this property maximality).2 Thus, while there may be multiple solutions, the

maximal solution is the obvious choice for the clearing authority to implement (because

it is simultaneously best for all banks).3

In this work, we study financial networks that contain debt contracts as well as

credit default swaps (CDSs). A CDS is a financial derivative in which the writer insures

the holder of the contract against the default of a third party, the reference entity.

Prior work has shown that the network structure of CDSs has a significant effect on

systemic risk (Duffie and Zhu, 2011; Loon and Zhong, 2014). CDSs are conceptually

different from debt in two ways: first, while debt is a binary relationship between two

banks, CDSs give rise to ternary relationships because the holder is affected by the

financial health of both the writer and the reference entity. Second, a debt contract

always implies a “long” position, i.e., financial distress of the writer affects the holder

in a negative way. In contrast, CDSs can also give rise to a “short” position where

financial distress of the reference entity triggers a payment and can thus benefit the

holder. A large part of the CDS market is made up of CDSs where the reference entity

is itself a financial institution.4 An analysis of CDS transaction data by D’Errico et al.

(2017) has shown that the financial institutions (including reference entities) in the CDS

market are tightly connected, implying the presence of circular relationships involving

holders, writers, and reference entities.

We ask: under which conditions can financial systems still be cleared when they

contain such CDSs in addition to debt? We take existence and maximality as desiderata

for the design of a financial system. Our overarching goal is to identify constraints on

2Note that the models in Eisenberg and Noe (2001) and Rogers and Veraart (2013) are based on
the payments between banks instead of recovery rates. It is easy to see that the two points of view are
equivalent. In debt-only financial systems, maximizing payments also maximizes equities.

3One could also include the interests of “society” (i.e., the real economy) in our analysis by introducing
it as an additional node in the network. In Section 5.2 (Corollary 1), we derive sufficient conditions for
maximality that guarantee that a solution is simultaneously best for all banks and society (assuming
that banks’ defaults can only have a negative effect on society).

4The total notional of these CDSs was USD 1.4 trillion in the first half of 2016. See Bank for
International Settlements (2017, Section Single-name instruments, Subsection Financial firms).
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the network structure under which the financial system is guaranteed to satisfy these

two desiderata, independent of the banks’ external assets (i.e., external to the financial

system).5 Like prior work on the clearing problem (Eisenberg and Noe, 2001; Rogers

and Veraart, 2013), our approach is agnostic to how networks have formed. Thus, our

results apply to any network, including those that could arise in equilibrium from a

decentralized process of network formation. Clearing is done in a centralized fashion in

our setting. Thus, in this paper, we are not concerned with a decentralized clearing

procedure as described, e.g., by Csóka and Herings (2017).

In this work, we are the first to present an analytically tractable model for the

clearing problem with CDSs on financial institutions (Section 2).6 Our first major

finding is that, in networks with debt and CDSs, default ambiguity can occur (Section

3). We first show that existence is not always satisfied. If the clearing authority was

facing such a situation in a crisis, a “paralysis” like in the East Asia crisis may ensue

because it would not be clear how to proceed. Second, we show that even in situations

where existence is satisfied, maximality may not be satisfied. In this case, the clearing

authority would have to choose among the different solutions, which would imply

favoring the equity (and thus shareholders’ profits) of one bank over that of another one.

This in turn might lead to major lobbying activities, as banks would have an incentive

to influence the clearing authority to select a solution that is favorable to them.

Note that solving the clearing problem is not only relevant in a financial crisis.

Regulators such as the European Central Bank regularly conduct stress tests to evaluate

how likely certain banks are to default given adverse economic scenarios. As regulators

progressively take on a macroprudential (i.e., system-wide) perspective, stress tests

increasingly take network effects into account (Constâncio, 2015, 2017).7 In the future,

it seems prudent to also include CDSs in network-based stress tests, given the important

5An orthogonal question is whether we can efficiently compute a solution to the clearing problem or
determine algorithmically if a solution exists. In a separate stream of work (Schuldenzucker, Seuken and
Battiston, 2017b,a), we found that, in contrast to debt-only networks, both problems are computationally
infeasible in general financial networks with CDSs. It is an open question to which extent algorithms
exist that are guaranteed to be efficient in restricted cases.

6See our discussion at the end of Section 2.3 for a comparison to previous approaches towards
modeling these networks. Note in particular that while Heise and Kühn (2012) also considered such
networks, their model does not lend itself to analytical examination of the clearing problem. The
authors made multiple simplifying assumptions, they considered a fixed number of update steps, and
they did not show that the resulting recovery rates are clearing.

7Already the ECB’s 2013 macro stress testing framework included network effects as one of its four
pillars (Henry et al., 2013). The later STAMPe framework, which was developed based on “top-down
models used to support EU-wide stress-testing exercises” (Constâncio, 2017), includes a variant of the
clearing problem very close to the literature, specifically to Eisenberg and Noe (2001). The problem is
solved 20,000 times in the context of a Monte Carlo simulation to obtain a probability distribution of
contagion losses (Dees, Henry and Martin, 2017, Chapter 12).

4



role they played in the 2008 financial crisis.8 Our work shows that the inclusion of CDSs

may lead to an inconclusive outcome of a stress test due to default ambiguity. Another

real-world application that illustrates the importance of our findings is the recent

provision to resolve a failing bank within one weekend (Single Resolution Board, 2016).

If default ambiguity arose in this application, this would hinder the quick resolution of

the bank.

To eliminate these issues regarding default ambiguity, we next study what constraints

on the network structure are sufficient to guarantee our two desiderata. To this end,

we first introduce the colored dependency graph, a new analysis framework to capture

the dependencies among banks, in particular among the three parties involved in a

CDS (Section 4). By restricting the cycles in this dependency graph, we then derive

sufficient conditions under which existence and/or maximality are satisfied (Section 5).

Furthermore, we provide an algorithm to compute a solution in this case. We want to

emphasize that the conditions we derive provide ex-ante guarantees, i.e., they are robust

to any possible future shock on the banks’ external assets. Having ex-ante guarantees

is important for practical applications because the mere possibility that there could be

a situation in the future where the market cannot be cleared could undermine trust of

market participants and bring about a liquidity crisis in the present. Furthermore, if

a bank anticipated a future possibility to influence the solution implemented by the

clearing authority in their favor, then the bank would have an incentive to already start

lobbying today.

We lastly describe potential policy implications. We show within our model that

the policy of routing all contracts through a central counterparty does not guarantee

existence. In contrast, when “naked” CDSs (i.e., CDSs that are held without also

holding a corresponding debt contract) are not allowed, then there always exists a

maximal clearing recovery rate vector. Our results thus contribute to the debate on a

possible regulation of the CDS market (Section 6).

Prior work on financial networks has primarily focused on financial contagion, i.e.,

how local shocks to market participants’ portfolios spread through the network and

cause systemic crises. Researchers have considered two questions in particular: first,

what is the impact of network topology on contagion compared to other factors such as

correlation between banks’ asset portfolios (Allen and Gale, 2000; Elsinger, Lehar and

Summer, 2006; Acemoglu et al., 2012; Glasserman and Young, 2015)? And second, how

8For example, Fender, Frankel and Gyntelberg (2008) described how the default of Lehman Brothers,
which was both a major counterparty and reference entity in CDSs, had significant repercussions in
money markets. Further distress in these markets could only be averted by the government rescue of
AIG, another major CDS trader.
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can the likelihood of an individual bank to trigger contagion be measured (Hu et al.,

2012; Battiston et al., 2012; Acemoglu, Ozdaglar and Tahbaz-Salehi, 2015; Demange,

2017)? This prior work has shown that financial contagion can amplify the effect of a

small shock leading to a large loss. In contrast, default ambiguity describes a situation

in which the effect of a shock on a financial network is not even mathematically well-

defined. This means that neither the interbank payments nor the system-wide losses

could be determined. In this sense, the risk of a financial system to experience default

ambiguity is more fundamental than the risk of financial contagion. Our dependency

analysis framework constitutes a new tool to study this risk and inform regulatory

policy.

2 Formal Model and Visual Representation

Our model is based on the model by Eisenberg and Noe (2001) and its extension to

default costs by Rogers and Veraart (2013). Both of these prior models were restricted

to debt contracts. We define an extension to credit default swaps. Following said prior

work, we assume a static model where a financial system is given exogenously and all

contracts are evaluated simultaneously. We adjust the notation where necessary.

2.1 The Model

Banks and external assets. Let N denote a finite set of banks. Each bank i ∈ N
holds a certain amount of external assets, denoted by ei ≥ 0. Let e = (ei)i∈N denote

the vector of all external assets.

Contracts. There are two types of contracts: debt contracts and credit default swaps

(CDSs). Every contract gives rise to a conditional obligation to pay a certain amount,

called a liability, from its writer to its holder. Banks that cannot fulfill this obligation

are said to be in default. The recovery rate ri of a bank i is the share of its liabilities

it is able to pay. Thus, ri = 1 if i is not in default and ri < 1 if i is in default. Let

r = (ri)i∈N denote the vector of all recovery rates.

A debt contract obliges the writer i to unconditionally pay a certain amount to

the holder j. The amount is called the notional of the contract and is denoted by

c∅i,j . A credit default swap obliges the writer i to make a conditional payment to the

holder j. The amount of this payment depends on the recovery rate of a third bank k,

called the reference entity. Specifically, the payment amount of the CDS from i to j

with reference entity k and notional cki,j is cki,j · (1− rk). The contractual relationships
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between all banks are represented by a 3-dimensional matrix c = (cki,j)i∈N, j∈N, k∈N∪{∅}.

Zero entries indicate the absence of the respective contract.

Note that when banks enter contracts, there typically is an initial payment. For

example, debt contracts arise because the holder lends an amount of money to the

writer, and holders of CDSs pay a premium to obtain them. In our model, we assume

that any initial payments have been made at an earlier time and are implicitly reflected

by the external assets.

We make two sanity assumptions to rule out pathological cases. First, we require

that no bank enters into a contract with itself or on itself (i.e., c∅i,i = cji,i = cji,j = cii,j = 0

for all i, j ∈ N). Second, as CDSs are defined as insurance on debt, we require that

any bank that is a reference entity in a CDS must also be writer of a debt contract

(i.e., if
∑

k,l∈N c
i
k,l > 0, then

∑
j∈N c

∅
i,j > 0 for all i ∈ N).

For any bank i, the creditors of i are those banks that are holders of contracts for

which i is the writer, i.e., the banks to which i owes money. Conversely, the debtors of

i are the writers of contracts of which i is the holder, i.e., the banks which owe money

to i. Note that the two sets can overlap: for example, a bank could hold a CDS on one

reference entity while writing a CDS on another reference entity, both with the same

counterparty.

Default Costs. We model default costs following Rogers and Veraart (2013): there

are two default cost parameters α, β ∈ [0, 1]. Defaulting banks are only able to pay to

their creditors a share of α of their external assets and a share of β of their incoming

payments. Thus, α = β = 1 means that there are no default costs and α = β = 0

means that assets held by defaulting banks are worthless. The values 1− α and 1− β
are the default costs.9

Financial System. A financial system is a tuple (N, e, c, α, β) where N is a set of

banks, e is a vector of external assets, c is a 3-dimensional matrix of contracts, and α

and β are default cost parameters.

Liabilities, Payments, and Assets. For two banks i, j and a vector of recovery

rates r, the liability of i to j at r is the amount of money that i has to pay to j if

recovery rates in the financial system are given by r, denoted by li,j(r). It arises from

9Default costs could result from legal and administrative costs, a delay in payments, or from fire
sales when defaulting banks need to sell off their assets quickly. Details can be found in Rogers and
Veraart (2013).
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the aggregate of all debt contracts and CDSs from i to j;

li,j(r) := c∅i,j +
∑
k∈N

(1− rk) · cki,j .

The total liabilities of i at r are the aggregate liabilities that i has toward other banks

given the recovery rates r, denoted by li(r);

li(r) :=
∑
j∈N

li,j(r).

The actual payment pi,j(r) from i to j at r can be lower than li,j(r) if i is in default.

By the principle of proportionality (discussed below), a bank that is in default makes

payments for its contracts in proportion to the respective liability;

pi,j(r) := ri · li,j(r).

The total assets ai(r) of a bank i at r consist of its external assets ei and the incoming

payments;

ai(r) := ei +
∑
j∈N

pj,i(r).

In case bank i is in default, its assets after default costs a′i(r) are the assets reduced

according to the factors α and β. This is the amount that will be paid out to creditors;

a′i(r) := αei + β
∑
j∈N

pj,i(r).

Clearing Recovery Rate Vector. Following Eisenberg and Noe (2001), we call a

recovery rate vector r clearing if it is in accordance with the following three principles

of bankruptcy law:

1. Absolute Priority : Banks with sufficient assets pay their liabilities in full. Thus,

these banks have recovery rate 1.

2. Limited Liability : Banks with insufficient assets to pay their liabilities are in

default and pay all of their assets to creditors after default costs have been

subtracted. Thus, these banks have recovery rate
a′i(r)
li(r)

< 1.

3. Proportionality : In case of default, payments to creditors are made in proportion

to the respective liability.
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The principle of proportionality is automatically fulfilled in our model by the definition

of the payments pi,j(r). The other two principles lead to the following definition.

Definition 1 (Clearing Recovery Rate Vector). Let X = (N, e, c, α, β) be a financial

system. A recovery rate vector is a vector of values ri ∈ [0, 1] for each i ∈ N . We denote

by [0, 1]N the space of all possible recovery rate vectors. Define the update function

F : [0, 1]N → [0, 1]N

Fi(r) :=

1 if ai(r) ≥ li(r)
a′i(r)
li(r)

if ai(r) < li(r).
(1)

A recovery rate vector r is called clearing for X if it is a fixed point of the update

function, i.e., if Fi(r) = ri for all i. We also call a clearing recovery rate vector a

solution to the clearing problem.

Remark 1 (Clearing Recovery Rates and Clearing Payments). Instead of clearing

recovery rates, one may equivalently consider clearing payments (as Eisenberg and Noe

(2001) did) and we will sometimes use this formulation in our proofs. If r is clearing,

then the total payments of any bank i are either equal to its liabilities (if i is not in

default) or they are equal to its assets after default costs (if i is in default). That is, we

have ∑
j∈N

pi,j(r) =

li(r) if ai(r) ≥ li(r)

a′i(r) if ai(r) < li(r).
(2)

Vice versa, if (2) holds, then r is clearing.10

Equity. For any bank i, its equity Ei(r) is the positive difference between assets and

liabilities. This is the profit that the owners of bank i get to keep after clearing;

Ei(r) := max (0, ai(r)− li(r)) .

As we will show in Section 3.2, there can be multiple solutions to the clearing problem.

In such a situation, we will assume that a bank prefers a solution that maximizes its

equity.

10One special case must be considered separately: banks that have zero liabilities. The recovery
rates of these banks are left unconstrained by (2), but are required to be equal to 1 by Definition 1.
However, due to our assumptions, no other bank depends on these banks, so this difference does not
matter. Thus, r becomes clearing (according to Definition 1) by simply setting the recovery rates of
these banks to 1.
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2.2 Example and Visual Representation

Figure 1 Example financial system
with α = β = 0.5

A

B C
1

2
1

0

2 1

Figure 1 shows a visual representation of an ex-

ample financial system. There are three banks

N = {A,B,C}, drawn as circles, with external

assets of eA = 0, eB = 2, and eC = 1, drawn as

rectangles on top of the banks. Debt contracts

are drawn as blue arrows from the writer to the

holder and they are annotated with the notion-

als c∅B,A = 2 and c∅B,C = 1. CDSs are drawn as

orange arrows, where a dashed line connects to

the reference entity, and are also annotated with the notionals: cBA,C = 1. Default cost

parameters α = β = 0.5 are given in addition to the picture.

A solution for this example is given by rA = 1, rB = 1
3 , and rC = 1. The liabilities

at this recovery rate vector are lB,A(r) = 2, lB,C(r) = 1, and lA,C(r) = 2
3 . Payments

are pB,A(r) = 2
3 , pB,C = 1

3 , and pA,C(r) = 2
3 and equities are EA(r) = 0, EB(r) = 0,

and EC(r) = 1. This is the only solution for this system.

2.3 Discussion of our Formal Model

Note that our addition of CDSs to the Rogers and Veraart (2013) model substantially

changes its mathematical properties. The liabilities li,j(r) now depend on the recovery

rate vector r, and the assets ai(r) contain terms of the form ckj,i · rj · (1− rk). Thus, the

update function Fi(r) depends on r in a way that is both non-linear and non-monotonic:

an increase in some recovery rate rj could lead to a higher or lower value of Fi for

another bank i. Because Fi(r) is non-monotonic, we cannot in general find a solution

to the clearing problem by simply iterating the function F : the iteration sequence

may cycle among different recovery rate vectors without even getting near a solution

(see Appendix A for an example). For the same reason, Eisenberg and Noe’s (2001)

algorithm for computing clearing payments in debt-only systems cannot be applied to

systems with CDSs.

Prior work has modeled financial networks almost exclusively as weighted binary

graphs where edges reflect binary “long” relationships such as debt (Eisenberg and Noe,

2001; Cifuentes, Ferrucci and Shin, 2005; Rogers and Veraart, 2013) and cross-ownership

(Vitali, Glattfelder and Battiston, 2011; Elliott, Golub and Jackson, 2014). Barucca

et al. (2016) presented a generalized framework encompassing a large class of such

models. However, weighted-graph models cannot accurately represent CDSs because

CDSs give rise to ternary relationships and both “long” and “short” positions, which
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our model captures well.11

3 Existence and Maximality in General Financial Systems

In this section, we explore the possible shapes of the set of solutions for a financial

system with debt and CDSs. We construct financial systems that have no solution

or multiple conflicting solutions. Consequently, neither existence nor maximality are

guaranteed in general.

At the heart of our constructions lies the following lemma, which may be of

independent interest to some readers. The lemma demonstrates a gap in the space of

possible solutions: the recovery rate of any bank is either 1 or below α or β, respectively.

Lemma 1. Let X = (N, e, c, α, β) be a financial system, r clearing for X, and let

i ∈ N be a bank. If ri < 1, then the following hold:

1. If i has only external assets (i.e.,
∑

j pj,i(r) = 0), then ri ≤ α. If α > 0, then

even ri < α.

2. If i has only interbank assets (i.e., ei = 0), then ri ≤ β. If β > 0, then even

ri < β.

3. In any case, ri ≤ max(α, β). If α > 0 or β > 0, then even ri < max(α, β).

Proof. Part 3: From the definition, it follows that a′i(r) ≤ max(α, β) · ai(r). Since

ri < 1, we must have ai(r) < li(r) (in particular li(r) > 0) and ri = Fi(r) =
a′i(r)
li(r)

≤
max(α, β)ai(r)li(r)

≤ max(α, β). If α > 0 or β > 0, the last inequality is strict. The proofs

of parts 1 and 2 are similar.

3.1 Existence of a Solution

What is perhaps most surprising about financial networks with CDSs is that as soon as

there are any default costs, existence of a solution can no longer be guaranteed.

Theorem 1 (No Solution with Default Costs). For any pair (α, β) with α < 1 or β < 1

there exists a financial system (N, e, c, α, β) that has no clearing recovery rate vector.
11Some prior work has employed graph-based models for CDS networks where it was implicitly

assumed that either the default of a reference entity is an event external to the financial system (Duffie
and Zhu, 2011; Markose, Giansante and Shaghaghi, 2012; Atkeson, Eisfeldt and Weill, 2013) or CDS
writers never default (Puliga, Caldarelli and Battiston, 2014). In this case, the holder of a CDS only
depends on one other bank and one only needs to model a binary rather than a ternary relationship.
Leduc, Poledna and Thurner (2017) described a conversion from a regulated financial network with
CDSs into a weighted graph via what they call effective net exposures. However, if the conversion is
applied to an unregulated network with CDSs, information about the contract structure is lost, making
it unsuitable as a basis for the clearing problem.
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Figure 2 Financial system with no solution for β < 1

D A B

C

1 2

δ

1 0 0

δ

Proof. If β < 1, consider the system in Figure 2. Let δ = 3 · 1
1−β . Assume towards a

contradiction that there is a clearing recovery rate vector r.

• If rA = 1, then pC,B(r) = lC,B(r) = δ(1 − rA) = 0, hence aB(r) = 0 and

pB,A(r) = 0. This implies aA(r) = 0 < 1 = lA(r) and thus rA = 0. Contradiction.

• If rA < 1, then rA ≤ β by Lemma 1. Thus, pC,B(r) = lC,B(r) = δ(1 − rA) ≥
δ(1 − β) = 3. Now aB(r) = 3 ≥ lB(r), so pB,A(r) = lB,A(r) = 2. Hence

aA(r) ≥ lA(r) and so rA = 1. Contradiction.

The proof for the case α < β = 1 is provided in Appendix B. It uses a similar

construction, but where A has positive external assets.

The system in Figure 2 is paradoxical because A is implicitly holding a CDS (and

is thus “short”) on itself: if A is in default, it receives a payment due to the CDS

written on it, so it is not in default, and vice versa. While A actually holding a CDS

on itself would be absurd, having B in between makes the situation much less obvious.

Supervisory authorities could only notice that the two scenarios are in fact equivalent

once they are aware of network effects and have detailed knowledge about the contract

structure, including the ternary relationships introduced by CDSs.

In addition, while it is hard to imagine why a bank would ever buy a CDS on itself,

Figure 2 could have formed in an entirely sensible way. For example, B could have

borrowed money from A and later placed a speculative bet on A’s default before both

banks were hit by a shock that wiped out their external assets. With only knowledge

of their own assets and liabilities, none of the banks would have noticed any problem.

Remark 2. We know from Rogers and Veraart (2013) that no example like in Theorem 1

can be constructed using only debt contracts. Note that it can also not be constructed

using only CDSs because in a financial system consisting of only CDSs, the recovery

rate vector (1, ... , 1) (nobody defaults) is always clearing: under this recovery rate

vector, no liabilities arise and thus no bank defaults. Therefore, non-existence can only

arise in systems with debt and CDSs.
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In a situation where there is no solution, one might be tempted to let go of the

principle that all contracts are evaluated simultaneously and instead evaluate the

contracts in some order. However, such a sequential clearing approach brings its own

set of problems, as the following example shows.

Example 1 (Sequential Clearing). We define a natural sequential clearing procedure: the

debt contracts are evaluated in a pre-determined order and banks pay their liabilities

based on their external assets and payments received so far, i.e., their “cash” holdings.

If a bank cannot pay a liability, it enters bankruptcy. First, default costs are subtracted

from the bank’s cash holdings and the recovery rate is computed based on the remaining

cash. Then all CDSs written on the bank are triggered and are evaluated next. The

process ends when all debt contracts have been evaluated.

Now assume that this procedure is applied to Figure 2 for β = 0.5, so that δ = 6.

• If the debt contract from A to D is evaluated first, then A defaults with rA = 0,

B receives 6 in the CDS and A receives 2 from B. The resulting equities are

EA = 2 and EB = 4.

• If instead, the debt contract from B to A is evaluated first, then B defaults with

rB = 0, A receives nothing and defaults with rA = 0, and B receives 6 in the

CDS. The resulting equities are EA = 0 and EB = 6.

While there may be alternative sequential clearing procedures, Example 1 shows

that sequential clearing is generally prone to two crucial shortcomings: first, the result

of the procedure heavily depends on the order of evaluation of the contracts. This order

could be chosen at random or based on some objective criterion (such as the maturity

of the contracts). In each case, the evaluation order would present an opportunity for

strategic manipulation. Second, the result can be far from clearing: in the first case,

the CDS “should not have” paid anything because A has higher assets than liabilities.

In the second case, B “should have” paid its debt to A in full. Given this, it seems

unlikely that a sequential clearing procedure could be defined that avoids the issue of

non-existence.

It turns out that the non-existence of a solution hinges on the default costs.

Theorem 2 (Existence of a Solution without Default Costs). Any financial system

(N, e, c, α = 1, β = 1) has a clearing recovery rate vector.

Proof. Since α = β = 1, we can simplify the update function F from Definition 1 to

Fi(r) = min(1, ai(r)li(r)
) on the set Li := {r | li(r) > 0}. In particular, Fi is continuous on

Li. We use this fact and apply a fixed-point theorem. Care must be taken because Fi is

13



not in general continuous on [0, 1]N \ Li. Consider the set-valued function ρ defined by

ρ : [0, 1]N → 2[0,1]
N

ρ(r) :=×
i∈N

ρi(r) where ρi(r) :=

{Fi(r)} if r ∈ Li
[0, 1] if r /∈ Li.

By Remark 1 for α = β = 1, it suffices to show that there is a vector r ∈ [0, 1]N for

which r ∈ ρ(r), i.e., ri ∈ ρi(r) ∀i ∈ N . By the Kakutani (1941) fixed point theorem,

such an r exists if (1) the domain of ρ is compact and convex, (2) the set ρ(r) is convex

for each r, and (3) the graph of ρ, Gρ := {(r, s) | s ∈ ρ(r)}, is a closed set.

(1) and (2) are obvious. Towards (3), it suffices to show that for each i the graph of

the function ρi, Gρi := {(r, si) | r ∈ [0, 1]N , si ∈ [0, 1], si ∈ ρi(r)}, is closed. To this end,

let ((rk, ski ))k∈N be a sequence in [0, 1]N × [0, 1] converging to some point (r, si) such

that ski ∈ ρi(rk) for each k. We need to show that si ∈ ρi(r). If r /∈ Li, then trivially

si ∈ ρi(r) = [0, 1]. If r ∈ Li, then si ∈ ρi(r) = {Fi(r)} because Fi is continuous on the

open set Li. Li is open because li is continuous.

In financial systems without default costs, money is never lost, just redistributed.

Theorem 2 shows that these systems always have a solution. It does not apply once

default costs are present because the update function F then has a discontinuity where

the assets of a bank are equal to its liabilities, i.e., when a bank is just on the verge of

defaulting. This discontinuity creates the “gap” in the space of possible recovery rates

(see Lemma 1) and ultimately gives rise to non-existence.

3.2 Multiplicity of Solutions

We now show that even when a solution exists, there can be multiple ones, and the

set of solutions may not have a structure that is economically desirable. We discuss

the structure of solutions in terms of the banks’ aggregate preferences. Recall that

we denote the equity of a bank i by Ei(r). We assume that, when there are multiple

solutions, banks prefer those that maximize their equity.

Definition 2 (Preferred and Maximal Solution). Fix a financial system X. A bank i is

said to weakly prefer a solution r over another solution r′ if Ei(r) ≥ Ei(r′). A solution

r is called maximal if it is weakly preferred to all other solutions by all banks.12

12 Note that a maximal solution is not necessarily unique, but all maximal solutions lead to the same
equities Ei(r).
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Figure 3 Financial system with no maximal solution.
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Our second desideratum, maximality, requires that a maximal solution exists.

Otherwise, any solution the clearing authority could select would be opposed by at least

one bank because this bank could achieve strictly higher equity in a different solution.

Such a situation is illustrated in the following theorem.

Theorem 3 (No Maximal Solution). For any α and β there exists a financial system

(N, e, c, α, β) that has a clearing recovery rate vector, but no maximal one.

Proof. We use the financial system in Figure 3 with δ = 1
1−β if β < 1 and δ > 1

arbitrary if β = 1. It is easy to verify that r0 := (0, 1, 1, 1) and r1 := (1, 0, 1, 1) (where

entries are in alphabetical order) are clearing. In any potential other solution, we must

have rC = rD = 1 and 0 < rA, rB < 1.

For β < 1, no other solution exists: if r was another one, then since rA < 1, by

Lemma 1 we have rA ≤ β, so aB(r) = δ(1 − rA) ≥ δ(1 − β) = 1. Thus, rB = 1.

Contradiction.

For β = 1, there is exactly one other solution r2 = (ζ, ζ, 1, 1), where ζ = δ2−δ
δ2−1 . This

is because r is a solution with rA, rB < 1 iff rA = δ(1− rB) and rB = δ(1− rA). It is

easy to verify that rB = rA = ζ is the unique solution of this linear equation system.

For any value of β, bank A has a positive equity of δ−1 in r1 and equity 0 (since it is

in default) in the other solution(s). Thus, A strictly prefers r1. Analogously, B strictly

prefers r0. This implies that none of the solutions of this system are maximal.13

To see why the solution structure in the previous theorem is economically undesirable,

consider the β < 1 case in the above proof and imagine a clearing authority faced

with the problem of actually clearing the market: there are two solutions, one where

A defaults and one where B defaults. Choosing among the solutions means giving

preference to one of the banks. It is not clear how this decision would be made and

the clearing authority may even be legally prohibited from making such a trade-off. If

13The solution r2 that exists only in the case without default costs is strictly preferred by C and D
over the other two solutions and strictly disfavored by A and B.
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a choice among non-maximal solutions were legally allowed, then a bank may have a

large incentive to lobby for the implementation of a solution that it prefers most. Note

that in contrast to non-existence, non-maximality can even occur in systems without

default costs.

If clearing were done sequentially in the scenario from Theorem 3, one of the

two solutions r0 or r1 would be chosen based on which of the two debt contracts is

evaluated first. In practice, such a scenario could lead to severe incentive problems.

In today’s financial practice, whether or not a CDS is triggered is decided by so-

called determinations committees. Each of the five regional determinations committees

is composed of the ten most active dealers together with five non-dealer members

(International Swaps and Derivatives Association, 2012). In Figure 3, assuming that

there is only one region, A, B, and C would be members of the determinations committee.

Taking the perspective of A in this committee, it would be rational to try to convince

the other members that B is in a bad financial situation. Once this is successful, the

CDS is triggered, A receives the payment, does not default, and B receives nothing.

Thus, in hindsight, it appears as though A was right about B. Of course, B wants

exactly the opposite of A. In contrast, when a maximal solution exists, it can be

implemented without having to make any choices that could be manipulated.

Remark 3. Note that Rogers and Veraart (2013) have previously observed multiple

solutions in debt-only networks due to default costs. However, that form of multiplicity

is much less problematic because in debt-only systems, there always exists a maximal

solution.

4 Dependency Analysis Framework: The Colored

Dependency Graph

In Section 3, we have shown that introducing CDSs into the well-established clearing

model by Eisenberg and Noe (2001) has the effect that existence and maximality are

no longer guaranteed. In this section, we develop an analysis framework, which we call

the “colored dependency graph,” to better understand this effect. In Section 5, we then

show how to use the colored dependency graph to derive sufficient conditions under

which the two desiderata are satisfied.

4.1 Covered and Naked CDS Positions

At the level of an individual bank, we need to distinguish between two fundamentally

different uses of CDSs. For the purpose of illustration, consider a financial system with
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Figure 4 Prototypical financial systems (top) and their colored dependency graphs
(bottom). Green edges with filled arrow heads indicate “long” positions while red edges
with empty arrow heads indicate “short” positions.

i j

i j

(a) Debt contract

i j

k

i j

k

(b) Naked CDS

i j
x

k

y ≥ x

i j

k

(c) Covered CDS

a single CDS where the CDS writer cannot default. If the holder of the CDS also holds

at least an equal amount of debt written by the reference entity, then the CDS holder is

“long” on the reference entity: a worse situation of the reference entity would at most

be offset by the CDS payment, but could never be beneficial for the holder. This use of

a CDS is called covered. In contrast, if the holder holds no or not enough debt written

by the reference entity, then it is “short” on the reference entity: a worse financial

situation of the reference entity would benefit the holder. This use of a CDS is called

naked. See Figure 4 (top row) for a depiction of a prototypical (a) debt contract, (b)

naked CDS, and (c) covered CDS. For the formal definition in general financial systems,

we must consider the notional of all CDSs that a bank holds on a reference entity to

classify a CDS position as covered or naked.

Definition 3 (Covered and Naked CDS Position). Let X = (N, e, c, α, β) be a financial

system. A bank j has a covered CDS position towards another bank k if the total

notional of CDSs that j is holding on k does not exceed the notional of debt j is holding

from k, i.e., if ∑
i∈N

cki,j ≤ c∅k,j .

Otherwise, j has a naked CDS position towards k.
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4.2 The Colored Dependency Graph

We can now define the colored dependency graph (or just the “dependency graph”).

Definition 4 (Colored Dependency Graph). Let X = (N, e, c, α, β) be a financial

system. The colored dependency graph CD(X) is the graph with nodes N and edges of

colors red and green constructed as follows.

1. For each i, j ∈ N , if c∅i,j > 0 or cki,j > 0 for any k ∈ N , then add a green edge

i→ j.

2. For each i, k ∈ N , if cki,j > 0 for any j ∈ N , then add a green edge k → i.

3. For each j, k ∈ N , if j has a naked CDS position towards k, then add a red edge

k → j.

The definition of the colored dependency graph can be understood in terms of the

three primitive contract patterns illustrated in Figure 4: debt contracts, naked CDSs,

and covered CDSs. In each case, the holder of any contract is “long” on the writer

since, in case the writer defaults, the lower the recovery rate of the writer, the lower the

payment which the holder receives. This is expressed by rule 1 in Definition 4. In case

of a debt contract, this is the only dependency that is induced while a CDS gives rise

to two additional dependencies. The writer of a CDS is always “long” on the reference

entity since, the lower the recovery rate of the reference entity, the higher the liability

for the writer. This is expressed by rule 2 in Definition 4. The position of the holder

of a CDS towards the reference entity depends on whether it is a naked or a covered

CDS: only the holder of a naked CDS is “short” on the reference entity, expressed by

rule 3 in Definition 4. A covered CDS on the other hand gives rise to a “long” position

together with the debt contract.

The following proposition shows the usefulness of the framework in capturing the

directional behavior of the update function F . We will repeatedly use it in Section 5

when deriving sufficient conditions. The proof is straightforward and thus omitted.

Proposition 1 (The Colored Dependency Graph and the Update Function). For any

two banks i and j, write r−ij for a vector of recovery rates of all banks excluding i and

j. Then the following holds:

1. If there exists an r−ij such that, holding r−ij fixed, the function Fj is increasing

in ri, then there is a green edge from i to j in CD(X).

2. If there exists an r−ij such that, holding r−ij fixed, the function Fj is decreasing

in ri, then there is a red edge from i to j in CD(X).

3. If there is no edge from i to j of any color, then Fj is independent of ri. The

converse is not necessarily the case.
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Figure 5 The colored dependency graphs of the financial systems from (a) Figure 1
and (b) Figure 2
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Remark 4 (Parallel Edges). Both a red and a green edge can be present in the dependency

graph in the same direction between the same two banks. In this case, whether a “long”

or a “short” effect is present depends on the recovery rates of the other banks. In

particular, parallel edges do not cancel out.

If a financial system contains only debt contracts, then the colored dependency

graph only has green edges; specifically, it has a green edge i → j whenever c∅i,j > 0.

This structure was introduced by Eisenberg and Noe (2001), who called it the “financial

system graph.” For systems with debt and CDSs, our colored dependency graph

provides an elegant conversion from the ternary relations introduced by CDSs to binary

relations, making them amenable to graph-theoretic analysis.14

Figure 5 depicts the colored dependency graphs of two financial systems that exhibit

very different behavior: Figure 5a corresponds to the example financial system from

Figure 1, which has a unique solution. Figure 5b corresponds to the financial system

from Figure 2, which has no solution. We immediately see some similarities and

differences: both graphs have a red edge; Figure 5a has no directed cycle while 5b has

two of them, A–B–A and A–C–B–A; and the former cycle contains a red edge. All of

these features will be of importance in the analysis in Section 5.

5 Analysis of Restricted Network Structures

With our analysis framework in place, we now use it to describe sufficient conditions

under which our desiderata are fulfilled. We show that one can guarantee our desiderata

14Leduc, Poledna and Thurner (2017) presented a mapping from a financial system with CDSs to a
weighted graph where they distinguished between naked and covered CDSs in a similar way as we do.
However, they made certain simplifying assumptions regarding the regulatory environment such that
only a subset of the possible dependencies arise and need to be considered. For example, their model
does not represent “short” dependencies such that naked CDSs cannot be captured. This makes their
model unsuitable to study general financial systems with naked and covered CDSs.
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by restricting the ways in which the edges in the dependency graph may form cycles.

We present three domain restrictions where we successively allow more cycles and

receive fewer and fewer guarantees.

5.1 Acyclic Financial Systems

If there are no cycles in the colored dependency graph, then the clearing problem has a

unique solution. As this solution is trivially maximal, both desiderata are fulfilled.

Theorem 4 (Existence and Uniqueness in Acyclic Financial Systems). Let X be a

financial system such that CD(X) has no cycles. Then X has a unique clearing recovery

rate vector.

Proof. WLOG assume that N = {1, ... , n} and banks are sorted in topological order,

i.e., whenever there is an edge i → j in CD(X), we have i ≤ j. This is possible

because CD(X) has no cycles by assumption. To find a solution r, iterate over banks

i in order, and in each step, set ri := Fi(r1, ... , ri−1), where r1, ... , ri−1 have already

been computed. This is well-defined by Proposition 1. In the end, r is clearing by

construction. Towards uniqueness, if r and r′ are both clearing, it follows by induction

on i that ri = Fi(r1, ... , ri−1) = Fi(r
′
1, ... , r

′
i−1) = r′i for all i, where the middle equality

is by induction hypothesis. Note that F1 is a constant function.

Theorem 4 shows formally that default ambiguity in financial systems with CDSs is

due to cycles in the dependency graph. Note that we must consider all dependency

edges here, including those originating at reference entities of CDSs. It is not sufficient

to consider the graph of liabilities, where an edge exists from the writer of each contract

to the holder, corresponding to only Rule 1 in Definition 4. This graph would be

acyclic for all our counterexamples in Section 3, though they clearly did not fulfill our

desiderata, showing that the more sophisticated colored dependency graph is necessary

to capture the behavior of a financial system with CDSs.

5.2 Green Core Systems

The previous theorem required a very strong assumption; in reality, financial systems

do contain cycles in the dependency graph, but not all of them pose a problem. In fact,

we know from Rogers and Veraart (2013) that debt-only financial systems, even if they

contain cycles, always satisfy existence and maximality. At the same time, debt-only

systems always have a completely green dependency graph, i.e., banks are only “long”

on each other. In this section, we show that all financial systems with a completely
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Figure 6 Colored dependency graph of a green core system with core C and leaf set L

C L

green dependency graph satisfy existence and maximality, thus generalizing Rogers and

Veraart’s result. In fact, we consider a slightly more general class of financial systems,

which we call green core systems.

Definition 5 (Green Core System). A financial system X is called a green core system

if in CD(X), banks with an incoming red edge (i.e., the holders of naked CDS positions)

have no outgoing edges. We call the set of these banks the leaf set and the other banks

the core.

An example green core system is shown in Figure 6. Banks in the leaf set have no

liabilities (otherwise they would have an outgoing green edge) and hence always have

recovery rate 1. This does not render the leaf set obsolete: allowing a leaf set keeps the

definition of green core systems general enough so that banks in the core can be writers

of naked CDSs. This feature will also be essential in Section 5.3, where we consider

even more general network structures that are composed of multiple green core systems,

which can be connected by red edges.

Green core systems always have a solution that is best for all banks in the core (we

call such a solution core-maximal). Our proof is constructive:

Theorem 5 (Existence and Core-Maximality in Green Core Systems). In any green

core system, the following holds:

1. There exists a recovery rate vector that maximizes both the recovery rate and the

equity of all banks in the core.

2. The iteration sequence (rn) defined by r0 = (1, ... , 1) and rn+1 = F (rn) converges

to this recovery rate vector.

Proof. The main technical challenge lies in proving the following Lemma:

Lemma 2. Consider a green core system with core C and leaf set L.
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1. The update function F is monotonic and continuous from above, where the order

relation is point-wise comparison of recovery rate vectors.

2. If i ∈ C, then the equity Ei is monotonic, also with respect to point-wise compari-

son.

The proof of Lemma 2 is given in Appendix C. The lemma formalizes the fact that

since all relevant dependency edges are green, a decrease in any bank’s recovery rate

can only affect the other banks in the core in a negative way. In addition, this happens

in a continuous fashion.

From part 1 of the lemma, it follows via a standard technique from lattice theory

(see Lemma 3 in Appendix C) that the sequence (rn) converges to a solution that

maximizes the recovery rate of each bank. By part 2 of the lemma, this solution also

maximizes all equities in the core.

Theorem 5 shows that green core systems always satisfy existence and core-

maximality. Furthermore, the proof of the theorem tells us that green core systems are

structurally very similar to debt-only systems. They satisfy the following three proper-

ties which have previously been observed for debt-only systems by Rogers and Veraart

(2013). First, the update function is monotonic and continuous from above. Second,

the set of solutions even forms a complete lattice (which follows from monotonicity of

F via the Knaster-Tarski fixed point theorem (Tarski, 1955)). Third, a core-maximal

solution can be found via the iteration sequence provided in part 2 of Theorem 5.

Remark 5 (Irrational Solutions). A subtle difference is that a core-maximal solution of

a green core system can contain irrational numbers while the maximal solution of a

debt-only system is always rational.15

A special case of Theorem 5 is a situation in which naked CDSs are not present:

Corollary 1 (Existence and Maximality without Naked CDSs). If no bank in a financial

system has a naked CDS position towards another bank, then there exists a maximal

clearing recovery rate vector.

Proof. In this case, the colored dependency graph contains only green edges. The

financial system is hence trivially a green core system where the core consists of all

banks.

15See Schuldenzucker, Seuken and Battiston (2017a, Appendix B) for a financial system with CDSs
and a unique and irrational solution. Inspection shows that it is a green core system. The maximal
solution of a debt-only system is rational because it can be computed exactly in finite time using
Eisenberg and Noe’s (2001) fictitious default algorithm.
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Corollary 1 has important implications for regulatory policy regarding naked CDSs,

which we discuss in detail in Section 6.

5.3 Systems without Red-Containing Cycles

We know from Theorem 5 and Corollary 1 that default ambiguity can be attributed

to the presence of red edges in the dependency graph. Green core systems restrict

these edges in an extreme way, only allowing them to leaf banks. But we know from

Theorem 4 (Acyclic Systems) that red edges to non-leaf banks do not always pose a

problem. In this section, we work towards understanding in which situations they do.

Our main result is that, regarding existence, only red edges that are part of a cycle of

dependencies can pose a problem.

Theorem 6 (Existence without Red-Containing Cycles). Assume that in the colored

dependency graph of a financial system, there is no cycle that contains a red edge. Then

a clearing recovery rate vector exists.

Our proof of the theorem is constructive by using an algorithm. Unfortunately,

simply iterating the function F like in the green core case does not work anymore in

the more general no-red-containing-cycle case (we provide an example in Appendix D).

Instead, our algorithm exploits the structure of the dependency graph. Recall that the

solutions of a financial system with debt and CDSs may be irrational (see Remark 5).

Given this, it is impossible to design an algorithm that can compute an exact solution in

finite time. Instead, we devise an approximation algorithm that computes an arbitrarily

accurate approximate solution. We now first describe our approximate solution concept

and our algorithm. We then prove correctness of the algorithm and Theorem 6.

Definition 6 (Approximately Clearing Recovery Rate Vector). Let X be a financial

system and let ε ≥ 0. A recovery rate vector r is called ε-approximately clearing or an

ε-solution for X if ‖F (r)− r‖ ≤ ε, where ‖r‖ := maxi |ri| is the maximum norm.

We now describe our core iteration algorithm to compute an ε-solution in a financial

system X when no cycle in CD(X) contains a red edge. Given are ε and X. We begin

by partitioning the dependency graph into strongly connected components; or cores.

Each of these corresponds to the core of a green core system. A core is a minimal set

of banks such that all banks with which these banks are in cycles are also part of the

core. By partitioning the graph in this way, the connections between different cores

form an acyclic graph, so we can sort them in topological order, i.e., edges only go from
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Figure 7 Dependency graph where no cycle contains a red edge. Cores are marked by
black rectangles. The topological ordering of cores is from left to right; the two cores
second from the left can be visited in any order.

earlier to later cores in the order, but never in the other direction.16 Figure 7 provides

an example for such a dependency graph. We now iterate over cores. By assumption,

all edges within a core are green, so we can use the iteration sequence from Section 5.2

to compute an ε-solution for each of them.

More in detail, let C1, ... , Cm be the cores in topological order. We store recovery

rates in a vector r. Initially, r is the empty vector. In step k ∈ {1, ... ,m}, we define a

function

F k : [0, 1]Ck → [0, 1]Ck

F ki (s) := Fi(r a s)

where “a” denotes concatenation of vectors. This corresponds to the update function

F restricted to Ck with previously computed recovery rates of the previous cores

C1, ... , Ck−1 given by r. F k is well-defined since by the topological ordering, each bank

i ∈ Ck only depends on the banks in C1, ... , Ck. We iterate the function F k starting at

s = (1, ... , 1) until ‖F k(s)− s‖ ≤ ε. We then add the recovery rates computed in s to r

and continue with the next core. The algorithm stops when all cores have been visited.

Proposition 2 (Correctness of the Core Iteration Algorithm). Assume that in the

colored dependency graph of a financial system, no cycle contains a red edge. Then for

any ε > 0, the core iteration algorithm computes an ε-clearing recovery rate vector.

Proof. To see that r is an ε-solution when the algorithm terminates, let i be a bank, let

k be such that i ∈ Ck, and let s be r restricted to the indices in Ck. By the topological

16Both, computing strongly connected components and sorting in topological order, can be done
easily using well-known algorithms (see, e.g., Korte and Vygen (2012)). Note that the topological order
may not be unique.
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ordering, Fi(r) only depends on the rj with j ∈
⋃
l≤k Cl. Hence, Fi(r) = F ki (s) and

therefore |Fi(r) − ri| = |F ki (s) − si| ≤ ‖F k(s) − s‖ ≤ ε as required, where the last

inequality holds by the algorithm’s stopping criterion.

It remains to show that the algorithm terminates, i.e., that the iteration sequence

for F k reaches the stopping criterion ‖F k(s)− s‖ ≤ ε after finitely many steps for each

k. First note that F k is monotonic and continuous from above. This follows just like

in Lemma 2, where we in addition need to account for the effects of earlier cores on

the financial sub-system Ck: CDSs written by banks in Ck on banks in earlier cores

give rise to additional fixed liabilities, and incoming payments from earlier cores to

Ck give rise to additional assets. These manifest as constants that do not affect the

argument in the proof. Now the iteration sequence converges to a maximal fixed point

of F k as in Theorem 5. In particular, we reach the stopping criterion after finitely

many steps.17

Given the core iteration algorithm, it is now straightforward to prove existence in

systems without red-containing cycles.

Proof of Theorem 6. We “run” the algorithm with ε = 0 to receive a constructive proof

of existence. The stopping criterion ‖F k(s) − s‖ = 0 is not attained after finitely

may steps, but in the limit of the iteration sequence. All other steps of the proof of

Proposition 2 remain the same.

Theorem 6 generalizes and unifies the existence statements of Theorems 4 and 5:

individually, neither cycles nor red edges going to non-leaf nodes are a problem; only red-

containing cycles can cause non-existence. Thus, the no-red-containing-cycle condition

is the most general (weakest) condition we have derived for existence (as it also covers

acyclic and green core systems). Regarding maximality, the weakest condition we have

derived is “acyclic or no naked CDSs” (Theorem 4 and Corollary 1). The absence of

red-containing cycles does not guarantee maximality because cores with an incoming

red edge may be made worse off when the recovery rates of earlier cores are maximized.

It is an open question whether a condition exists that is weaker than “acyclic or no

naked CDSs” and guarantees maximality. However, because our analysis has shown that

cycles and red edges in the dependency graph are essential factors for non-maximality,

it seems unlikely that a simple condition that fulfills this requirement can be found.

17The algorithm is designed to exploit the structure of the financial network. Nevertheless, in
pathological cases, the runtime can still be exponential in the number of decimal places of the notionals.
As the computational complexity of the green core case is still an open question, it is also an open
question whether or not a significantly better (i.e., polynomial) worst-case runtime is achievable.
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In this section, we have shown that our dependency analysis framework can be

used to derive sufficient conditions for existence and maximality. However, they are

not necessary conditions. While it may be possible to derive stronger guarantees by

taking even more information about the contract structure into account, we should

not expect to obtain equivalence conditions: our computational complexity results

in Schuldenzucker, Seuken and Battiston (2017a) imply that any condition that is

equivalent to existence or maximality would be NP-hard to check (informally, take

exponential run-time) and would therefore be of limited use. In contrast, our framework

has yielded sufficient conditions that are simple and easy to check. Thus, we argue that

our colored dependency graph hits a “sweet spot” by capturing the most important

interactions among contracts, enabling us to distinguish between long and short positions

as well as between covered and naked CDSs.

6 Discussion: Policy Relevance

We evaluate two recent policies regarding their effectiveness for protecting against

default ambiguity under the assumptions of our model: central counterparty clearing

and banning naked CDSs.

The regulatory frameworks EMIR (in Europe) and Dodd-Frank (in the US) mandate

central counterparty clearing for a large part of the over-the-counter (OTC) derivatives

market.18 In its most extreme form, this means that all contracts are routed via a

central node: a bank A would not write a contract to a bank B directly, but rather

bank A would write a contract to a highly capitalized central entity S and S would

write a contract to bank B. One of the desired effects is that the central counterparty

would absorb a shock on the banks, prevent it from spreading through the network,

and thus prevent financial contagion. While using a central counterparty simplifies

the network of liabilities, surprisingly, it is not effective for protecting against default

ambiguity in our model. Figure 8 provides an example: there are three banks that hold

CDSs and write debt together with a central counterparty S. The other counterparties

(CDS writers and debt holders) are not shown in the picture. Note that S has very high

external assets such that it cannot default. This system does not have a solution (the

proof is given in Appendix E). Indeed, when we look at the colored dependency graph

(Figure 8, right part) we see that it still contains a red-containing cycle A–B–C–A. At

a higher level, we see that while a central counterparty can help reduce counterparty

18Both frameworks mandate central counterparty clearing for certain types of derivatives (interest
rate swaps and index CDSs), but not for the kind of CDSs we discuss in this paper (single-name CDSs).
See European Securities and Markets Authority (2017a,c) for EMIR and the documents linked at U.S.
Commodity Futures Trading Commission (2017) for Dodd-Frank.
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Figure 8 Left: Financial system with a central counterparty S where β < 1 is arbitrary
and δ := 1

1−β+β2−β3 . There is no clearing recovery rate vector. Right: the corresponding
colored dependency graph.
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risk (i.e., the risk to a bank that a debtor cannot pay its liability), fundamental risk

(i.e., the risk that the reference entity in a CDS has a higher or lower recovery rate

than expected) still flows directly between the banks, essentially “around” the central

counterparty. This is enough to lead to non-existence of a solution.

Another policy that has seen adoption in Europe since the European sovereign debt

crisis in 2011 is banning naked CDSs. A CDS on a European sovereign state can only

be bought if a corresponding (debt) exposure is present as well (European Commission,

2011, also see European Securities and Markets Authority (2017b)). Interestingly,

Corollary 1 shows that if all naked CDSs are banned, not only those on sovereigns,

then the clearing problem is guaranteed to have a maximal solution. Thus, under the

assumptions of our model, this policy is effective against default ambiguity. Note that

in this paper, we refrain from recommending the adoption of any particular policy.

Instead, our findings illustrate how our framework can be used to help inform regulatory

policy.

7 Conclusion

In this paper, we have shown that financial networks that contain debt contracts and

CDSs are prone to a phenomenon we call default ambiguity, i.e., a situation where it

is impossible to decide which banks are in default. For many years, the volume of

CDSs has dominated that of debt contracts, with the total notional of CDSs written

on financial institutions exceeding USD 1 trillion worldwide. While the European

Commission has previously acknowledged that CDSs can give rise to new kinds of

systemic risk, they have not yet considered the risk of default ambiguity. Our new

dependency analysis framework reveals that default ambiguity hinges on the presence of

cycles in the colored dependency graph. Table 1 summarizes our findings. As we have
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Table 1 Summary of our results

Existence Maximality Reference

Debt
only

3 3 Eisenberg and Noe
(2001); Rogers and
Veraart (2013)

Debt +
CDSs

External reference
entities only

3 3 See above19

Acyclic
dependency graph

3 (unique) 3 This paper,
Section 5.1

No naked CDSs 3 3 This paper,
Section 5.2

Green core systems 3 (3) (in the core) This paper,
Section 5.2

No red-containing
cycles

3 7 This paper,
Section 5.3

Red-containing
cycles

3 (no default costs)20

7 (with default costs)

7 This paper,
Section 3

shown, the more we relax the restrictions on the type of these cycles, the weaker the

guarantees we obtain for our desiderata. To find a solution for the restricted network

structures we have studied, one can use the core iteration algorithm we have provided.

Our results illustrate that, to understand the behavior of financial systems with

CDSs, it is essential to consider the ternary relations which they introduce, including

the reference entities. If we had instead only considered the writer-holder relationships,

all of our counterexamples in Section 3 would have looked like simple acyclic graphs and

we would only have captured one of the three dependencies arising from a CDS. Our

insights may help bring about a paradigm shift in the literature on systemic risk in CDS

markets, where so far, either some of the network effects were ignored or the reference

entities were aggregated (Markose, Giansante and Shaghaghi, 2012; Brunnermeier, Clerc

and Scheicher, 2013; D’Errico et al., 2017).

From a conceptual perspective, the reason why CDSs can give rise to default

ambiguity is that the holder of a naked CDS may profit from financial distress of

another market participant. Note that this phenomenon is not exclusive to CDSs. For

example, the holder of a bond put option and the writer of a bond call option both

19 When reference entities are external to the financial system, then CDS liabilities can be considered
constant for the purpose of clearing and the results for financial systems without CDSs carry over to
this case.

20Remember that our proof of this result is non-constructive. Indeed, we have shown in a separate
stream of work (Schuldenzucker, Seuken and Battiston, 2017b,a) that in general financial systems
without default costs, finding a solution is PPAD-hard (informally, any algorithm would need exponential
run-time in the worst case). This implies that any practical algorithm would have to use heuristics.
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benefit if the issuer of the underlying bond is in financial distress and therefore the

price of the bond declines. Stock options exhibit similar behavior. Thus, we expect

that these markets would also be susceptible to default ambiguity. Our framework can

be extended to these other derivative markets in a straightforward way (in particular

to options).

In this paper, we have essentially adopted a “worst-case” perspective for our analysis

of default ambiguity. An important open question is which properties of the network

topology make default ambiguity more or less likely if existence and maximality are

not guaranteed. We envision that this question could be answered by first designing a

suitable generative model and then performing Monte Carlo simulations with different

model parameters.

An important problem that is closely related to clearing is network valuation of

contracts. Studying this problem requires a model with uncertainty about the future

value of banks’ external assets. Barucca et al. (2016) designed such a model for debt-only

networks by extending the Eisenberg and Noe (2001) model. Researchers interested in

network valuation with CDSs could similarly extend our new model. This would raise

new questions regarding whether a consistent vector of CDS valuations exists and what

is needed for market prices to reflect these true values.
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Figure 9 Financial system where iterating F does not converge to a solution. Let
α = β = 1 (no default costs).
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A Example that iterating the update function does not in

general converge to a solution

Consider Figure 9.21 The unique solution of this system is rA = 6
7 , rB = 3

7 , and

rC = rD = 1. However, the iteration sequence defined by r0 = (1, 1, 1, 1) and

rn+1 = F (rn) does not converge to this solution, but rather exhibits cycling behavior:

we have r1 = (1, 0, 1, 1), r2 = (0, 0, 1, 1), r3 = (0, 1, 1, 1), r4 = (1, 1, 1, 1) = r0, etc.

One may think that the cycling behavior is due to an unfortunate choice of the

starting point r0, but this is not the case: the iteration sequence does not converge for

any starting point other than the solution itself. To see this, let ∆ 6= 0 and rB = 3
7 + ∆.

It is easy to see from the definition of F that

FB(F (r)) = min (1, max (0, 3 (1− 2rB))) = min

(
1, max

(
0,

3

7
− 6∆

))
.

Thus, after two iterations, the distance to the solution has increased sixfold until the

sequence again enters the infinite loop above.

B Omitted Proofs from Section 3

Proof of Theorem 1, α < β = 1. Consider Figure 10, a variant of Figure 2, with values

for eA, γ, and δ chosen as follows: let eA ∈ (0, 1) arbitrary, set γ = 1− 1+α
2 eA, and let

δ ≥ γ
1−αeA−γ .

21 Figure 9 corresponds to Figure 2 for β = 0.5 where we however set α = β = 1. That is why, in
contrast to Figure 2, this system has a solution.
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Figure 10 Financial system with no solution for α < β = 1
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It is easy to see that

eA < 1 (3)

eA + γ > 1 (4)

αeA + γ < 1. (5)

We have γ > 0 by definition and δ > 0 by (5), so this is a well-defined financial system.

We perform a case distinction like in the proof for β < 1. Assume towards a

contradiction that r is clearing.

• If rA = 1, then pC,B(r) = 0, so aB(r) = 0 and pB,A(r) = 0. Thus, aA(r) = eA < 1,

which implies that rA < 1. Contradiction.

• If rA < 1, then A is in default, so rA =
αeA+pB,A(r)

1 ≤ αeA + γ. Thus, pC,B(r) =

δ(1 − rA) ≥ δ(1 − αeA − γ) ≥ γ, so B is not in default and pB,A(r) = γ. Now

aA(r) = eA + γ > 1 by (4), so A is not in default and rA = 1. Contradiction.

C Omitted Proofs from Section 5

Proof of Lemma 2. As the main step of the proof, we show that for all i ∈ C, the assets

ai(r) and the assets after default costs a′i(r) are monotonically increasing in r.

ai and a
′
i are monotonic: It suffices to show that the total incoming payments of

bank i,
∑

j pj,i(r), are monotonically increasing in r. Towards this end, let

qk,i(r) := rkc
∅
k,i + (1− rk)

∑
j
rjc

k
j,i.

Observe that
∑

j pj,i(r) =
∑

k qk,i(r). Each individual summand qk,i(r) is monotonically

increasing in r by the green core property, which can be seen as follows. Let r ≤ r′
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point-wise. Then

qk,i(r
′)− qk,i(r) = r′kc

∅
k,i − rkc

∅
k,i + (1− r′k)

∑
j
r′jc

k
j,i − (1− rk)

∑
j
rjc

k
j,i

≥ r′kc∅k,i − rkc
∅
k,i + (1− r′k)

∑
j
rjc

k
j,i − (1− rk)

∑
j
rjc

k
j,i

=
(
r′k − rk

)
·
(
c∅k,i −

∑
j
rjc

k
j,i

)
≥ 0

where the last inequality holds because r′k−rk ≥ 0 by assumption and c∅k,i−
∑

j rjc
k
j,i ≥

c∅k,i −
∑

j c
k
j,i ≥ 0 because we are in a green core system, so i must have a covered

CDS position towards k.

Ei is monotonic for i ∈ C: First note that the liabilities li(r) are monotonically

decreasing in r in any financial system, as can be seen directly from the definition. As

ai(r) is monotonically increasing by the above argument, Ei(r) = max(0, ai(r)− li(r))
is monotonically increasing.

F is monotonic and continuous from above: Since Fi is constant 1 for i ∈ L, it

suffices to show the statement for each Fi with i ∈ C. To this end, note that

Fi(r) =

f(r) if h(r) ≥ 0

g(r) if h(r) < 0

where f(r) := 1 and g(r) :=
a′i(r)
li(r)

and h(r) := ai(r)− li(r) are continuous and monotonic.

It is easy to see that this implies that Fi is monotonic and continuous from above.

The following lemma has become a standard proof technique in financial network

theory. For example, Rogers and Veraart (2013) used the same argument to prove

existence of a maximal solution in their setting. The lemma can be viewed as a special

case of the Tarski-Kantorovitch theorem (see Granas and Dugundji (2003)). We re-state

it here for convenience because there is no standard reference for it.

Lemma 3. Let N be any finite set and let F : [0, 1]N → [0, 1]N be any function that is

monotonic and continuous from above, where the order relation is given by point-wise

ordering. Then F has a point-wise maximal fixed point and the iteration sequence (rn)

defined by r0 = (1, ... , 1) and rn+1 = F (rn) converges to this maximal fixed point.

Proof. We proceed in three steps.

(i) (rn) is descending and convergent: We show by induction that (rn) is a descending

sequence, i.e., rn ≥ rn+1 point-wise. For n = 0, this is trivial because r0 is the maximal

element of [0, 1]N . For n > 0 and assuming rn−1 ≥ rn, we have rn = F (rn−1) ≥
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Figure 11 Left: Financial system with no red-containing cycle where iterating F does
not converge to a solution. Let α = β = 0.5. Right: Its colored dependency graph.
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F (rn) = rn+1 by monotonicity of F . Since (rn) is also bounded from below by (0, ... , 0),

it must be convergent. Call the limit of the sequence r.

(ii) r is greater or equal to any fixed point of F : It suffices to show that any rn is

greater or equal to any fixed point r∗ of F . We proceed by induction: for n = 0 the

statement is obvious; for n > 0 and assuming rn−1 ≥ r∗ we receive by monotonicity of

F that rn = F (rn−1) ≥ F (r∗) = r∗.

(iii) r is a fixed point of F : Since F is continuous from above and (rn) is descending,

we have F (r) = F (limn r
n) = limn F (rn) = limn r

n+1 = limn r
n = r.

D Example that iterating the update function is not

effective in the no-red-containing-cycle case

Consider Figure 11. The cores of the dependency graph in topological order are {A, B},
{C}, {D}, and {E}. The unique solution of this system is given by rA = rB = 0 and

rC = rD = rE = 1. This is because C and E cannot default, A and B must default

with recovery rate 0 as they together have no assets but an outgoing liability, and from

this it follows that D has assets exactly equal to its liabilities.

Simply iterating the update function F does not converge in this system. To see

this, let r0 = (1, ... , 1) and rn+1 = F (rn) for each n. We first consider the recovery

rates of bank A and B as the iteration sequence proceeds. Note that B defaults in step

1 and then, following the default of B, A defaults in step 2. We thus have from the

definition of F for rnA and rnB:

rnA =
1

2
rn−1B for n ≥ 2 and r0A = r1A = 1

rnB =
1

4
rn−1A for n ≥ 1 and r0B = 1.
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Solving these recursive equations yields

rnA = 2−3b
n
2
c

rnB = 2−3d
n
2
e+1 for n ≥ 1 and r0B = 1.

We observe that for n ≥ 2, rnA < rnB if n is even and rnA > rnB if n is odd. This is because

log(rnA) − log(rnB) = −3bn2 c+ 3dn2 e − 1 = 3(dn2 e − b
n
2 c) − 1 and dn2 e − b

n
2 c is 0 if n is

even and 1 if n is odd.

Now consider bank D. The assets of D consist of a CDS on A and debt on B, so

aD(r) = 1 − rA + rB, and lD(r) = 1. Thus, D is in default iff rA > rB. Over the

course of the iteration, whenever n is even, we have rnA < rnB, so D is not in default

and rn+1
D = FD(rn) = 1. Whenever n is odd, we have rnA > rnB, so D is in default

and rn+1
D = FD(rn) < max(α, β) = 0.5. Hence, rnD changes by at least 0.5 from each

iteration to the next. In particular, the sequence of iterates does not converge.

Our example may appear artificial because bank D is just on the verge of defaulting

in the solution. We indeed expect that the iteration sequence converges if this is not

the case for any bank. However, it is not clear how one would detect this property if

the exact solution is not yet known.

E Omitted Proofs from Section 6

Proof that the system in Figure 8 does not have a solution for β < 1. First note that

the system is well-defined because 1− β + β2 − β3 = (1− β) + β2(1− β) > 0, so δ > 0.

Assume towards a contradiction that r is a clearing recovery rate vector.

If rA = 1, then rB = 0, thus rC = 1 and thus rA = 0, as is easily seen from the

contracts. Contradiction.

If rA < 1, then rA ≤ β by Lemma 1. Then aB(r) ≥ 1− β, so rB ≥ β(1− β). Then

aC(r) ≤ 1−β(1−β), so rC ≤ β(1−β(1−β)). Finally, aA(r) ≥ δ(1−β(1−β(1−β))) =

δ(1− β + β2 − β3) = 1 = lA(r). Contradiction to rA < 1.
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