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Abstract
We study the design of core-selecting payment rules for combinatorial auctions (CAs), a

challenging setting where no strategyproof rules exist. Unfortunately, under the rule most
commonly used in practice, the Quadratic rule Day and Cramton (2012), the equilibrium
strategies are far from truthful. In this paper, we present a computational approach for �nd-
ing good core-selecting payment rules. We present a parameterized payment rule we call
FRACTIONAL∗ that takes three parameters (reference point, weights, and ampli�cation) as in-
puts. This way, we construct and analyze 610 rules across 30 di�erent domains. To evaluate
each rule in each domain, we employ a computational Bayes-Nash equilibrium solver. We
�rst use our approach to study the well-known Local-Local-Global domain in detail, and
identify a set of 20 “all-rounder rules” which beat Quadratic by a signi�cant margin on e�-
ciency, incentives, and revenue in all, or almost all domains. To demonstrate robustness of
our �ndings, we take four of these all-rounder rules and evaluate them in the signi�cantly
larger LLLLGG domain (with six bidders and eight goods), where we show that all four rules
also beat Quadratic. Overall, our results demonstrate the power of a computational search
approach in a mechanism design space, and more speci�cally the large improvements that
are possible over Quadratic.

1. Introduction

The spectrum auctions conducted by governments around the world over the last twenty years
are a true success story for market design in general and auction design in particular. Sophisti-
cated mechanisms have been used to sell resources worth billions of dollars, forming the basis
for today’s wireless industry (Cramton, 2013). Recent versions of these markets have used a
combinatorial auction (CA) mechanism. The advantage of CAs (e.g., in contrast to running mul-
tiple single-item auctions) is that buyers can express complex valuation functions over bundles
of goods, which avoids the exposure problem, and can increase e�ciency.
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Over the last 15 years, there has been a large literature on the design of bidding languages,
clearing algorithms, and activity rules for use in combinatorial auctions (CAs) (Cramton, Shoham
and Steinberg, 2006). However, �nding optimal payment rules has turned out to be somewhat
elusive. In this work, we focus on the payments that are charged after the auction closes and the
winners have been determined (i.e., we treat the CA as a one-shot game). This allows us to focus
on direct payment rules which take as input the bidders’ value reports and compute payments for
each of the winning bidders. A real-world application is the Combinatorial Clock Auction (CCA),
whose supplementary round is a sealed-bid package auction Ausubel and Baranov (2017).

Early proposals for CAs typically considered charging VCG prices (Varian and MacKie-Mason,
1994). At �rst sight, the VCG mechanism may seem like an appealing payment rule for a CA
because it is strategyproof. Unfortunately, VCG is generally viewed as unsuitable in a CA domain
where items can be complements because it often produces outcomes outside of the core Ausubel
and Milgrom (2006). Informally, this means that payments may be so low that a coalition of
bidders may be willing to pay more in total than what the seller receives from the current winners.
From a revenue perspective, VCG is also often undesirable, because CAs can produce very low
or even zero revenue, despite high competition for the goods in the auction. For these reasons,
recent auction designs have employed core-selecting payment rules that are guaranteed to charge
payments in the (revealed) core (Ausubel and Milgrom, 2002; Milgrom, 2007; Day and Milgrom,
2008).

1.1. The �adratic Rule
Unfortunately, there exists no strategyproof core-selecting payment rule Goeree and Lien (2016),
and thus, designing an “optimal” core-selecting rule is a challenging market design problem.
Parkes, Kalagnanam and Eso (2001) were the �rst to introduce the idea of �nding prices that min-
imize some distance metric to VCG, �rst for combinatorial exchanges, and later for CAs (Parkes,
2002). Since then, a few rules have been proposed that minimize some distance metric to VCG
(e.g., (Day and Raghavan, 2007)). However, in each case, the weights or distance metrics were
chosen “manually,” typically without substantial justi�cation.

Ultimately, Day and Cramton (2012) proposed the Quadratic rule, and this is also the rule most
often used in practice today. The Quadratic rule selects prices that are (1) enforced to be in the
core (with respect to the submitted bids), and within this (2) minimal in their total revenue to the
seller, and then within this (3) minimal in the Euclidean distance to VCG prices.

The Quadratic rule has been used for more than 10 years by many governments around the
world to allocate resources worth more than $20 billion Ausubel and Baranov (2017). Never-
theless, we still have an incomplete understanding of this rule. Only recently has the research
community started to graple with the incentive properties of the Quadratic rule. For the so-called
Local-Local-Global (LLG) setting, with 2 items and 3 bidders, Ausubel and Baranov (2013) as well as
Goeree and Lien (2016) have independently derived the Bayes-Nash equilibrium of the Quadratic
rule. It turns out that, even though the rule minimizes the Euclidean distance to VCG, the equi-
librium strategies are far from truthful. This motivates the search for better payment rules in this
paper.
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1.2. Prior Work: A Manual Search for Be�er Payment Rules
The research community has already considered a number of alternative proposals for payment
rules. Erdil and Klemperer (2010) argued that non-VCG reference points that are independent
of the bidders’ reports o�er better incentives at the margin of truthful play. However, they do
not o�er a concrete payment rule, and they do not o�er an argument about what happens when
further deviations are necessary. Along the same lines, Day and Cramton (2012) studied the
Quadratic rule with a ZERO reference point, instead of VCG. Using computational experiments
(assuming truthful bidding), they found that, on average, the use of ZERO may tilt the payo�
distribution in favor of those winning bidders with higher values. However, they did not study
this payment rule in equilibrium, nor did they analyze the e�ect on e�ciency, revenue or overall
incentives.

Ausubel and Baranov (2013) provided an analytical study of three core-selecting payment rules
(Quadratic rule, Proxy rule, and Nearest-Bid rule), varying the distributional assumptions and the
degree of risk-aversion. They found that core-selecting payment rules perform better in terms
of e�ciency and revenue when bidders’ values are more correlated, while VCG performs worse.
However, they did not identify a new payment rule with superior properties to Quadratic.

Parkes, Kalagnanam and Eso (2001) already proposed three weighted payment rules, in particu-
lar, the use of the bidders’ VCG payo� to in�uence which core point would be selected. Ausubel
and Baranov (2017) reported that weighted versions of the Quadratic rule have been used in the
most recent CCAs conducted in Australia and Canada. However, they did not use VCG-payo�,
but rather well-chosen reserve prices, to power their weighted version of the Quadratic rule. The
(intuitive) reason in favor of using reserve-price-weights is to make sure that small players in the
auction are not disadvantaged compared to larger players. However, no theoretical analysis of
the properties of this reserve-price-weighted version of Quadratic exists.

We would like to highlight one common theme among this prior work on core-selecting pay-
ment rules: it always required some experienced auction designer to come up with a new payment
rule, or an improvement to an existing payment rule. Sometimes, we have a few theoretical re-
sults that support their arguments (in favor or against) the use of a particular rule. But in many
cases, new rules were proposed using arguments that made intuitive sense, but without a com-
prehensive analysis. In this paper, we propose a radically di�erent approach. Instead of relying
on our own ingenuity of coming up with an even better payment rule, and having to analyze its
properties in equilibrium by hand, we developed a computational search approach to automate
this process.

1.3. A Computational Search for Be�er Payment Rules

The basic idea of our computational search approach is relatively simple: we construct a formal
framework to describe and parameterize the space of core-selecting payment rules, and we then
use an algorithm to systematically search through this space and identify the best-performing
rules. The details, however, are quite intricate.

First, the design space for core-selecting payment rules is in�nitely-large. To make it amenable
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to a computational search, we must thus choose a well-suited framework and parametrization. To
this end, we introduce a parameterized payment rule we call FRACTIONAL∗, that is parameterized via
three parameters: a reference point R, a weightW , and an ampli�cation A. FRACTIONAL∗ minimizes
theW -weighted Euclidean distance to the reference pointR, whereby the weights can be ampli�ed
(i.e., exponentiated) by the ampli�cation A. This provides us with a rich framework that can
capture all (minimum-revenue) core-selecting payment rules (if suitable parameters are chosen).
For example, FRACTIONAL∗(R=pVCG,W=EQUAL,A=1) is a complicated way to describe the Quadratic
rule. FRACTIONAL∗(R=ZERO,W=πVCG,A= 3) is a way to describe a VCG-payo�-weighted version
of Quadratic with the ZERO reference point, but where the weights are also exponentiated by
3. In this paper, we consider 9 di�erent reference points, 11 di�erent weights, and 6 di�erent
ampli�cations, giving rise to a total of 610 payment rules that we have studied.

The second challenge relates to comparing the 610 rules in terms of their e�ciency, incentives,
and revenue. Because no core-selecting payment rule can be strategyproof, we must evaluate all
of our rules in Bayes-Nash equilibrium (BNE). Of course, nobody wants to derive 610 BNEs by
hand (which typically involves solving a di�erential equation), which is why we use a recently
developed computational BNE solver by Bosshard et al. (2017) to power our computational search
approach. Concretely, this is an algorithm that takes as input a payment rule and produces as
output an ε-BNE. Because the algorithm only produces a numerical result, and not a theoretical
result, we only obtain an ε-BNE with ε > 0, instead of a true, theoretical BNE. However, the
precision of the algorithm is extremely high (e.g., for the LLG domain, we report ε-BNEs with
ε < 0.1%). For the BNE solver, a key question is the representation of the bidders’ value space and
its action/strategy space. For this work, we use an approach that lets us model the bidders’ full,
continuous value space (i.e., no discretization is necessary). In terms of the action/strategy space,
we employ a piece-wise linear approximation of the bidder’s optimal strategy, using 80 control
points, which allows for an extremely good approximation of even very non-linear functions.1
The �nal result of our computational search is still “one (or multiple) optimal core-selecting pay-
ment rule(s)” that can be described very easily via three parameters, as a mathematical formula,
or as a simple math program.2 Thus, our resulting optimal rules could easily be adopted in real-
world CAs.

1.4. Towards Robust All-Rounder Rules

A key question that arises when evaluating core-selecting payment rules (analytically or compu-
tationally) is what domain to choose for the evaluation. In this paper, we analyze two domains. In

1This is in contrast to some prior work that has employed computational BNE solvers, but with a restricted strategy
space, for example using a simple multiplicative or additive shading strategy Lubin and Parkes (2009); Lubin, Bünz
and Seuken (2015).

2This is in contrast to the automated mechanism design approach Sandholm (2003), where a mechanism is automat-
ically created (by an algorithm) for each speci�c problem instance (at “run-time”, so to say). Our approach is also
di�erent from computational mechanism design/algorithmic mechanism design Nisan and Ronen (2001), where the
mechanism is still typically designed by hand, but where an additional goal is that the overall mechanism/algorithm
is computationally tractable.
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a �rst step, we perform an extensive analysis in the stylized but well-know LLG domain, with two
goods and three bidders. In a second step, to check robust of our results and evaluate whether
our �ndings generalize, we go to the larger LLLLGG domain, with eight goods and six bidders.

LLG models a CA with two goods A and B, and three bidders, where the two local bidders are
only interested in A or B respectively, and the global bidder is interested in the bundle {A,B}.
However, instead of just studying standard LLG (with uniform distributions and no correlation),
we have created 29 di�erent variations of the LLG domain (varying, e.g., the marginal distribution
as well as the correlation between bidders). Thus, with 610 rules evaluated on 29 domains, we
have studied 17690 rule-domain combinations. This allows us to identify a set of 20 very good
all-rounder rules, i.e., payment rules that perform well across all 29 domains.

While these all-rounder rules perform well under di�erent distributions and correlations, all
settings we study in the �rst step are structurally the same, i.e., the LLG domain. This natu-
rally raises the question how robust these rules are to structural changes in the domain, i.e.,
how well our �ndings generalize to larger domain sizes. To this end, we consider the larger LL-
LLGG domain. While LLG is still small enough such that systematically searching through 17690
rule-domain combinations with a fully expressive strategy space is computationally feasible, even
evaluating a single rule in LLLLGG takes more than one day on a compute cluster. For this reason,
we only evaluate a small subset of our rules in LLLLGG. Our main �ndings are that those rules
which are among the best in the LLG also beat Quadratic by a large margin in LLLLGG. Further-
more, those rules which are among the worst in LLG are also worse than Quadratic in LLLLGG.
This suggests that our results are robust, not only to changes in the distribution and correlation,
but also to the structure and size of the domain.

1.5. Towards a Proposal for a new Rule

Our overarching goal in this paper is to provide a thorough evaluation of di�erent core-selecting
payment rules to inform the decision regarding which rules perform best. Eventually, we hope to
make a proposal regarding the implementation of a new, better rule in practice. While we may
not be there yet, we consider this paper an important step in this direction.

One interesting �nding that falls out of our analysis of the best 20 all-rounder rules is that
using the Shapley value turns out to be extremely attractive in the design of our rules. Many
of our best-performing rules use the Shapley value, either as a reference point or as weights.
This dovetails nicely with a recent result by LukeLindsay (2017), who also showed the bene�ts of
using the Shapley value for the design of pricing rules for auctions and exchanges, albeit not for
core-selecting payment rules.

A second interesting pattern that emerges from our analysis is that, in general, the rules that
perform best tend to “favor” bidders with larger values (i.e., generate lower core prices for them).
Parkes, Kalagnanam and Eso (2001) called these kinds of rules Large rules (in contrast to Small
rules). It turns out that, for e�ciency and revenue, it is most important to provide the bidders with
the large values with good incentives to bid truthful. This is in stark contrast with the �ndings
of Lubin and Parkes (2009), who found that in combinatorial exchanges (CEs), Small rules tended
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to perform better. This illustrates that CAs and CEs may be more di�erent than one might think
at �rst sight.

Interestingly, there are di�erent ways to achieve the e�ect of a Large rule, and our search for
good all-rounders reveals the di�erent combinations of reference points, weights, and ampli�ca-
tions that lead to this e�ect. One of our rules is very similar to Quadratic, as it also uses VCG
payments as a reference point, but it uses the inverse bids as weights, which has the e�ect that
the higher the bid, the lower the core payment will be, which turns this rule into a Large rule.
A similar e�ect can be achieved by using a “zero“ reference point, which strongly favors bidders
with large values. Our results show that using Quadratic with a ZERO reference point would ac-
tually overshoot the necessary e�ect. Instead, some of our best rules that use the ZERO reference
point dampen the strong e�ect which the reference point introduces by also using a small weight
that shifts the power a little bit towards the smaller players.

This last observation actually points towards a more general learning from this overall exer-
cise which we cannot emphasize enough: the performance of a core-selecting payment rule is
determined by the combination of its three design features, i.e., reference point, weights, and am-
pli�cation. Prior work has focused on individual design dimensions (e.g., changing the reference
point, or adding weights). However, the main �nding of our work is that these “local” changes to
the payment rule are most likely misguided. Instead, what really matters in the design of optimal
core-selecting payment rules seems to be the perfect combination of its features. Therefore, the
result of our research is not one best reference point, or one best set of weights. Instead, our anal-
ysis leads to a list of best-performing rules, where for each rule, the reference point, the weights,
and the ampli�cation are perfectly tuned to complement each other in the best possible way.

Obviously, we could not have obtained these insights regarding the perfect combination of the
rule parameters using a manual design approach. Thus, our paper shows the power of a compu-
tational search approach in a mechanism design space. Furthermore, our results demonstrate the
large improvements that are possible over Quadratic in terms of e�ciency, incentives and rev-
enue. Finally, we hope that this work will eventually help auction designers identify an attractive
alternative to Quadratic to be used in practice as well.

2. Preliminaries

In a combinatorial auction (CA), there is a set M of m distinct, indivisible items, and a set N of n
bidders. Each bidder i has a valuation function vi which, for every bundle of items S ⊆ M , de�nes
bidder i’s value vi (S ) ∈ R, i.e., the maximum amount that bidder i would be willing to pay for S .
To simplify notation, we assume that the seller has zero value for all items, although our setup
extends to the case where the seller has non-zero value (see Day and Cramton (2012) for how to
handle reserve prices).

We let p = (p1, ...,pn ) denote the payment vector, with pi denoting bidder i’s payment. We
assume that bidders have quasi-linear utility functions, i.e., ui (S ,pi ) = vi (S ) − pi . Bidders make
reports about their values to the mechanism, denoted v̂i (S ), which may be non-truthful (i.e.,
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v̂i , vi ). Following existing work in this area (Goeree and Lien, 2016; Ausubel and Baranov,
2013), we assume that bidders only bid on items for which they have a positive value. We de�ne
an allocation X = (X1, . . . ,Xn ) ⊆ Mn as a vector of bundles, with Xi ⊆ M being the bundle that
i gets allocated. A mechanism’s allocation rule maps the bidders’ reports to an allocation. We
only consider allocation rules that maximize reported social welfare, yielding an allocation X ∗ =
arg maxX

∑
i ∈N v̂i (Xi ), subject toX being feasible, i.e.,

⋂
X ∗i = ∅. In addition to the allocation rule,

a mechanism also speci�es a payment rule, de�ning prices as a function of the bids. Together,
these de�ne the outcome O = 〈X ,p〉. An outcome O is called individually rational (IR) if, ∀i:
ui (Xi ,pi ) ≥ 0.

2.1. VCG, Payo�, and VCG Payo�

The famed VCG mechanism (Vickrey, 1961; Clarke, 1971; Groves, 1973) generalizes the well-
known second-price auction. Its allocation rule chooses the allocation X ∗ that maximizes the
bidders’ reported social welfare. Its payment rule is de�ned as follows:

De�nition 1 (VCG Payment Rule) Given an allocation X ∗, and bidders’ value reports v̂ , VCG
charges each bidder i its marginal cost to the economy, i.e., the externality he imposes on all other
bidders. Formally:

pVCG,i =
∑
j,i

v̂j (X
−i ) −

∑
j,i

v̂j (X
∗), (1)

where X−i is the welfare-maximizing allocation when all bidders except i are present.

The VCG mechanism is social-welfare maximizing and strategyproof, i.e., it is a dominant strategy
for every bidder to report his true value vi . Every mechanism other than VCG we consider in
this paper will not be strategyproof, and thus we will in general have to di�erentiate between a
bidder’s true value vi and his reported value v̂i .

De�nition 2 (Payo�) Given a payment pi charged by a particular payment rule, a bidder’s payo�
is the bidder’s pro�t evaluated at his true value, i.e.,

πi = vi (X
∗
i ) − pi . (2)

The payo� achieved under a particular rule is what a bidder actually cares about and tries to
maximize in equilibrium.

Note that at the reports of a non-strategyproof mechanism, we can still compute VCG pay-
ments, which are the payments the bidders would have paid if the VCG payment rule had been
used, but applied to the value reports submitted to the current payment rule. We will use those
VCG payments in the de�nition of some of our more sophisticated core-selecting payment rules.
Analogously, we can also de�ne a bidder’s VCG payo�, which is the payo� the bidder would have
gotten, given his reported value, if the VCG payment rule had instead been used in place of the
actual payment rule.
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De�nition 3 (VCG Payo�) A bidder’s reported VCG Payo� is the di�erence between his reported
value and his VCG payment:

πVCG,i = v̂ (X
∗
i ) − pVCG,i . (3)

2.2. Bayes-Nash Equilibrium

For the analysis of auction payment rules we assume that the bidders know their own value func-
tion, but do not have full information about the other bidders’ value functions. Instead, bidders
only have distributional information regarding the other bidders’ value functions. Thus, the ap-
propriate equilibrium concept is the Bayes-Nash Equilibrium. For the following de�nition, we let
si denote bidder i’s strategy, which is a mapping from his true value function vi to a possibly
non-truthful report v̂i . Given a value function and a strategy from each bidder, this determines
the outcome of the auction. Thus, we can let ui (s1 (v1),s2 (v2), . . . ,sn (vn )) denote bidder i’s utility
for the outcome of the auction. We use v−i to denote the value functions of all bidders except i ,
and analogously for the strategies s−i :

De�nition 4 (Bayes-Nash Equilibrium) A strategy pro�le s∗ = (s∗1 , . . . ,s
∗
n ) is a Bayes-Nash

equilibrium (BNE) in a sealed-bid auction if, for all bidders i , and all values functions vi

Ev−i
[
ui (s

∗
i (vi ),s

∗
−i (v−i ))

]
≥ Ev−i

[
ui (v̂i ,s

∗
−i (v−i ))

]
, for all possible reports v̂i , (4)

where the expectation is taken with respect to the distribution over the other bidders’ value functions.

In words, a bidder’s BNE strategy is an optimal strategy (a mapping of true value functions
to reported value functions) given his belief regarding the other bidders’ value functions. With
this background, we next describe the key desiderata for payment rules in the core-selecting CA
setting.

3. Computational Search Approach

Next, we de�ne the the space of rules we investigate using our computational approach. These
rules are all core-selecting, so we begin by introducing this concept.

3.1. The Core

Informally, a payment rule is outside the core if a coalition of bidders is willing to pay more than
what the seller receives in the mechism. Payment rules that avoid such outcomes are said to be
core-selecting (Day and Milgrom, 2008). Formally we have:

De�nition 5 (Core) We letW denote the set of winners, X ∗ the welfare-maximizing allocation,
C ⊆ N denotes a coalition of bidders, andXC is the allocation that would be chosen by the mechanism
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if only the bidders in the coalitionC were be present. Then, a price vectorp is in the core, if, in addition
to individual rationality, the following set of core constraints hold:∑

i ∈W \C

pi ≥
∑
i ∈C

vi (X
C ) −

∑
i ∈C

vi (X
∗) ∀C ⊆ N (5)

Enforcing prices to be in the core puts lower bounds (constraints) on the payments of the winners,
where each coalition of bidders leads to one core constraint.3 Intuitively, the winners’ payments
must be su�ciently large, such that there exists no coalition that is willing to pay more to the seller
than the current winners’ payments. In a CA with complements, VCG prices are often outside
the core and, in the worst case, VCG may generate zero revenue despite high competition for the
goods. Figure 1 illustrates the core and several reference points in the setting with two goods and
three players considered in this paper (see Section 5.1). Bidder 1 bids 80 for good A, bidder 2 bids
90 for good B, and bidder 3 bids 100 for the bundle {A,B}.

3.2. Design Framework for New Core-Selecting Payment Rules

Figure 1: A graphical depiction of the core, as
well as the price vectors correspond-
ing to PAYASBID, VCG, QUADRATIC

and the reference points πVCG, pVCG,
pSHAPLEY,πSHAPLEY, and ZERO.

Given a bid vector, a core-selecting payment rule
always selects a price vector in the core (the
shaded area in Figure 1). Day and Raghavan
(2007) proposed to only select prices from the
so-called minimum-revenue-core (MRC), which
is indicated as the diagonal line in Figure 1.4
The motivation for using this constraint is that
this minimizes the total amount of deviation po-
tential for all bidders. The QUADRATIC rule most
commonly used in practice also employs the
MRC constraint, and for this reason we also only
consider payment rules which select prices from
the minimum revenue core. Still, this leaves an
in�nite number of price vectors to choose from,
and thus lots of room for the design of new pay-
ment rules, which will all have di�erent properties in equilibrium.

3Note that the core is de�ned in terms of bidders’ true values. However, given that no strategyproof core-selecting CA
exists, we must expect bidders to be non-truthful. Goeree and Lien (2016) have recently shown that the outcome
of a core-selecting CA can be outside the true core in a BNE. Thus, core-selecting CAs only guarantee to produce
outcomes in the revealed core, i.e., in the core with respect to reported values. Going forward, whenever we talk
about the core, or core-selecting rules, we always mean the revealed core, unless we state it otherwise. Note that
for the auctioneer (e.g., the government), having prices in the revealed core is typically want she wants, because
this protects the auctioneer against law-suits from losing bidders and from the appearance that an unacceptably
large amount of revenue was left on the table.

4Day and Raghavan (2007) have shown the somewhat surprising result that this MRC constraint can end up being
binding, even for the QUADRATIC rule, which minimizes the Euclidean distance to VCG.
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As depicted in Figure 1, the QUADRATIC rule selects a price vector in the MRC which minimizes
the Euclidean distance to pVCG (computed at the reported values of the bidders). Here, pVCG serves
as the reference point of the payment rule; we note that pVCG is not a �xed point but rather de�ned
as a function of the bids, so formally reference points are functions, not single points. Of course
pVCG is only one possible reference point and bidders can, via their value reports, manipulate
the reference point; this is true even for pVCG. This motivates the use of alternative reference
points, such as ZERO = ~0, which as a constant obviously cannot be manipulated. We also consider
weighted rules where a weighting function computes a weight per bidder based on the reported
values. For QUADRATIC the weights are simply EQUAL = ~1

To de�ne our space of rules, we generalize the Euclidean distance minimization in the
QUADRATIC rule, which is de�ned algorithmically as follows:

De�nition 6 (Algorithmic Framework for Core-Selecting Payment Rules) Given a refer-
ence point, weights, and ampli�cation, the unique core-selecting price vector is chosen to be:

1. Within the core.

2. Within this, in the minimal revenue core (MRC).

3. Within this, minimal in the weighted and ampli�ed distance metric to the reference point.

In step (3) we generalize the Euclidean distance used by QUADRATIC to the following:

fw,a (p,r
∗) =

√√ n∑
i=1

1
wa
i
|pi − r

∗
i |

2 (6)

where p is the price vector being chosen, r ∗ is a reference point, w is a weight vector, and a is an
ampli�cation factor.

Proposition 1 The payment rule framework described in De�nition 6 is general and encompasses
all possible MRC-selecting rules.

Proof 1 Let PMRC be an arbitrary MRC selecting rule that outputs core payments pMRC . Letw = ~1
and r ∗ = pMRC . Clearly p = pMRC minimizes f~1,1 (p,p

MRC ) and pMRC is in MRC by de�nition.

Working in a combinatorial exchange setting, Parkes, Kalagnanam and Eso (2001) introduced a
FRACTIONAL rule (sometimes called the PROPORTIONAL rule) with this proportional charging property
restricted to r ∗ = pVCG andw = πVCG. Because we use a generalized form of this distance function,
we call our payment rules FRACTIONAL∗, and use a wide array of reference points and weights,
described in the next section. Additionally, we also introduce the ampli�cation factor. When
a = 0, the weights are ignored and the QUADRATIC rule is recovered. As a → ∞, the weights will
dominate over the quadratic term, and payments will be pushed as far as possible in the direction
of the weights consistent with the core and MRC constraints.
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Within this framework, we also consider taking the inverse of the weights, which e�ectively
reverses the prioritization they construct. And lastly, because we include in our examinations ref-
erence points that may be within/above the core, we considermirroring those points within/above
the core across the nearest MRC facet so as to put the points outside and below the core. This
has the e�ect of ensuring that the direction (and thus the sign) of the distance to the MRC line is
always consistent, which it otherwise would not be.

3.3. Overview of all Core-Selecting Payment Rules

Consistent with the above framework, in this paper, we structure the design space of MRC-core-
selecting payment rules to include the cross product of the following parameters, resulting in 610
rules. This set includes all existing rules in this space we are aware of and many more:

1. Reference Points: ZERO, BID, pVCG, πVCG, πM
VCG, pSHAPLEY, p

M
SHAPLEY, πSHAPLEY, π

M
SHAPLEY

2. Weights: EQUAL, BID, BID-1, πVCG, π -1
VCG, pVCG, p-1

VCG, πSHAPLEY, π
-1
SHAPLEY, pSHAPLEY, p

-1
SHAPLEY

3. Ampli�cation: We include {0.5,1,2,3,5,10}

Here we usep for payments and π for payo�s, theM superscript denotes mirroring of reference
points, and the −1 superscript denotes inversion of weights. πSHAPLEY denotes Shapley values which
are a payo� structure for cooperative games with desirable properties (Shapley, 1953). The Shap-
ley value is the average additional contribution that each agent brings to a coalition of agents.
It is important that the seller is considered an agent as no coalition can produce welfare with-
out him. pSHAPLEY are payments that lead to a payo� of πSHAPLEY, i.e. pSHAPLEY := v̂ − πSHAPLEY. For
the design of our rules we use πSHAPLEY and pSHAPLEY. Like the core, the Shapley value is a concept
from cooperative game theory. Unlike the core, though, the Shapley value, when applied to the
coalition game including all bidders, can allocate surplus to losing bidders. However, because we
restrict payments to the core, no surplus is allocated to losing bidders.5 We will see that πSHAPLEY
as well as pSHAPLEY will turn out to be very useful, as reference points and as weights.

3.4. Searching for Optimal Rules via a Computational BNE Solver

Given our framework for the design of core-selecting payment rules, the question arises how to
�nd the optimal one. Note that for every candidate rule to be evaluated (in terms of e�ciency,
incentives and revenue) we must �nd the BNE of this rule. In this paper, instead of doing this
analytically, we use a BNE search algorithm that was recently introduced by Bosshard et al. (2017).
The algorithm represents the bidders’ strategy space as a piecewise linear approximation with 80
control points. Its main idea is based on the basic approach of iterated best response dynamics via
the �ctitious play algorithm Brown (1951). The algorithm proceeds in rounds. In each round, each

5We also experimented with an alternative approach where the Shapley value is only applied to a coalition game
among the winning bids, as in LukeLindsay (2017). However, the particular variant of the Shapley value did not
seem to make a big di�erent which is why we only report one set of results for simplicity.
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bidder’s strategy is moved towards its best response to the current strategies of the other players.
This process repeats until a certain convergence criterion is reached. We provide a pseudo-code
description of the high-level algorithm in Appendix H. For details, please see Bosshard et al. (2017).

We emphasize that the strategies we study here are not simple additive or multiplicative
“shades,” but rather full bidding functions. Because �ctitious play algorithms are not guaran-
teed to converge in pure strategies (which we require), it is possible that we may only �nd an
ϵ-BNE for a reasonably large ϵ . In our results for LLG, we only report rules for which the al-
gorithm has achieved a 0.1%-BNE on all of our domains, i.e., a bidder can increase his utility by
at most 0.1% (additively) by deviating from the BNE.6 In our results for LLLLGG, we only report
rules for which the algorithm has achieved a 2.5%-BNE.7

Equipped with the BNE algorithm, the next question is how to search through the (truly in-
�nitely large) design space for new core-selecting payment rules. At �rst sight, some type of
gradient decent in the parameter space may seem like a good approach. However, our results
clearly show that the rule space is highly non-convex over the di�erent parameters of the rule.
Furthermore, we will show later that the outcome of the rules is highly sensitive to the exact com-
bination of rule parameters. Perhaps even more importantly, some rule parameters are functions
(e.g., Shapley), making numerical optimization extremely challenging. Even if such optimization
were possible, it would not be generalizable to other contexts. Finally, the computational costs
involved in computing each individual BNE (minutes to hours in LLG, days in LLLLGG) make
gradient-based approaches infeasible, even for the continuous components of the parameters.

The approach we have chosen is e�ectively an exhaustive search over our design framework
in the discretized parameter space. We compute the BNEs of every rule de�ned in the previ-
ous section for every domain we consider. We then compare these rules according to multiple
design goals, which we detail in Section 4, to �nd the optimal rule. In addition to being compu-
tationally feasible, one distinct advantage of this approach is that all rules we evaluate are easily
interpretable (i.e., the reference points, weights and ampli�cation factors are general and human-
readable). Thus, the rules can be lifted from the LLG and LLLLGG domain, to be directly applied
in any CA, regardless of size or structure.

4. Design Dimensions

We strive for the following three objectives when designing core-selecting payment rules, in this
order: (1) high e�ciency, (2) good incentives, and (3) high revenue. In this section, we introduce

6In theory, it is possible that multiple BNEs exist. Practically, when we have run the solver multiple times, we have
never found two signi�cantly di�erent ε-BNEs for the same rule. Consequently, in our search, we deterministically
seek a single BNE (the one closest to truth).

7 While such a �lter is necessary to ensure we only examine rules for which a complete picture is known, it does
mean that there may be rules from within our search space that we do not evaluate here because of the di�culty
of �nding a BNE for them. This yields the following interpretation to our results presented below: the rules we
�nd are indeed good, but we can not preclude the possibility that there are even better rules, even in our parameter
space, that we are forced to exclude.
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our formal measures for these three dimensions. As there does not exist a strategyproof core-
selecting payment rule Goeree and Lien (2016), all three dimensions are evaluated in BNE.

4.1. High E�iciency

From a social planner’s perspective (e.g., a government auctioning o� spectrum) it is desirable
to maximize the social welfare of the mechanism (i.e., the sum of the winners’ values for their
allocations). The e�ciency of a mechanism is de�ned as the fraction of the social welfare that the
mechanism achieves. As we evaluate the e�ciency of our rules in BNE, we consider the expected
e�ciency in BNE. Thus, our measure for e�ciency is the expected welfare of the mechanism
divided by the expected welfare of the optimal allocation. Formally, given an auction instance I ,
let SWOPT (I ) denote the social welfare obtained under the optimal allocation given bidders’ true
values. Let SWM (I ) denote the social welfare obtained by the mechanism M when all bidders play
their BNE strategies. We de�ne the e�ciency of mechanism M as:

E�ciency(M) =
E∼I [SWM (I )]
E∼I [SWOPT (I )]

(7)

where the expectation is taken over the auction instances in the domain being analyzed. This is
the standard de�nition of e�ciency used in prior work, e.g., by Goeree and Lien (2016).

4.2. Good Incentives

We next desire that our payment rules produce “good incentives.” In the past, auction designers
have frequently argued in favor of the Quadratic rule because of its property to “induce truthful
bidding” Cramton (2013), or to “minimize the bidder’s ability to bene�t from strategic manipu-
lation” Day and Raghavan (2007), even though Quadratic is not strategyproof . One argument is
that, if the rule is “approximately strategyproof”, then �nding a bene�cial deviation from truthful
bidding may be so hard that many bidders may just report truthfully Day and Milgrom (2008).
Of course, because there is no strategyproof core-selecting CA, there will always remain some
strategic opportunities for the participants; however, we would like these opportunities in BNE
to be as small as possible.

Of course, the manipulability of a payment rule depends on a bidder’s value; in particular, some
rules may be more manipulable for bidders with small values while others may be more manip-
ulable for bidders with large values. To capture the incentive properties of a rule in one number,
we de�ne an aggregate incentives measure (which we just call “incentives” going forward) as the
average Euclidean distance between bidders’ truthful value v and their bid v̂ in BNE. Formally,
we have:

Incentives(M) =

√∫
v
f (v ) · (v − v̂ )2 dv (8)
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where f (v ) is the probability density function (PDF) in the domain we are analyzing, and the bid
v̂ is the optimal bid in BNE for that domain. Note that this is simply a PDF-weighted L2 norm.

4.3. High revenue

Another motivation for using core-selecting payment rules is to achieve high revenue, in partic-
ular higher revenue than VCG Day and Milgrom (2008); Day and Raghavan (2007). Because the
revenue achieved by a rule is very domain dependent, we measure the fraction of the VCG revenue
which a rule achieves in a particular domain, de�ned analogously to e�ciency (except that, in
contrast to e�ciency, a rule can achieve more than 100% of the revenue achieved by VCG). Thus,
our measure for the revenue achieved by a mechanisms M is de�ned as:

Revenue(M) =
E∼I [RevenueM (I )]
E∼I [RevenueVCG (I )]

(9)

where the expectation is taken over the auction instances in the domain being analyzed.

5. Results for LLG

In this section, we study the Local-Local-Global (LLG) domain (described below), and several
novel variants. We �rst focus on LLG for several reasons: First, the existing theoretical results
for simple rules provide a benchmark for our experiments. Second, solving for the BNE gets
exponentially harder as the domain gets more complex. LLG is simple enough that we can solve
for the full BNE strategies for a large number of rules. That said, as we shall show, both the design
space and the resulting BNE structure is surprisingly subtle and intricate. Thus, it is important to
understand the nature of the BNEs in a small domain before we move on to a larger domain.

5.1. LLG UNIFORM

In LLG, there are two items A and B, and three bidders. Two of the bidders are local bidders, each
only interested in either itemA or B respectively. The third bidder is the global bidder who wants
both items simultaneously. It remains to de�ne the distribution from which the bidders’ values
are drawn. Existing work has focused on the case we refer to as UNIFORM where each player is
drawn independently with local bidders’ values ∼ U [0,1] and the global bidder ∼ U [0,2].

BNEs of core-selecting payment rules are complex to study analytically, and consequently ex-
isting theoretical results are only available for LLG. Prior work has shown that the BNE strategies
of the local bidders require an additive shading in this setting:8

8See Ausubel and Baranov (2013) for a similar result where ZERO is used for the reference point.
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Rule E�ciency Incentives Revenue
QUADRATIC 98.03% 16.19 91.30%

Improvement Over QUADRATIC Avg.

Best E�ciency FRACTIONAL∗(R=πSHAPLEY,W=p
-1
VCG,A=2) 0.31% 3.90% 1.62% 1.94%

Best Incentives FRACTIONAL∗(R=πSHAPLEY,W=BID-1,A=10) 0.27% 5.13% 1.27% 2.22%
Best Revenue FRACTIONAL∗(R=πSHAPLEY,W=p

-1
VCG,A=2) 0.31% 3.90% 1.62% 1.94%

Table 1: The results for DOMAIN(MD=UNIFORM). The �rst row is the performance of QUADRATIC

relative to VCG. The subsequent rows show the top rules by each dimension.

Proposition 2 (Goeree and Lien (2016); Ausubel and Baranov (2013)) In UNIFORM, a Bayes-
Nash equilibrium of theQUADRATIC rule is for the global bidder to be truthful, and for the local bidders
to bid:

v̂ =max (0,v − (3 − 2
√

2)) ≈max (0,v − 0.17) (10)

The results for our computational investigation of this domain are provided in Table 1. The way
to read this (and all following tables) is as follows. The QUADRATIC results are always provided in
the �rst row (and here they correspond to the BNE in Proposition 2). The next three rows of the
table then show the top rules by each dimension (e�ciency, incentives, revenue). The cell entries
for these rules now represent the (multiplicative) improvement of the respective metric/column
relative to QUADRATIC. In this case, FRACTIONAL∗(R=πSHAPLEY,W=p

-1
VCG,A=2) is best by both e�ciency

and revenue, providing evidence that the Shapley value can be useful in constructing these non-
coperative mechanisms. The rule is able to increase the e�ciency (relative to QUADRATIC) by 0.31%
and revenue by 1.62%. In this domain, the best rule by incentives is the FRACTIONAL∗(R=πSHAPLEY,
W=BID-1,A=10) rule, where the reference point is also Shapley, but where inverse bids are used as
weights, with an extreme ampli�cation. This combination of inverse bid-weights and a very high
ampli�cation produces a Large-style rule.

5.2. LLG with Correlation

We expand upon the basic LLG structure, by introducing correlation in the player values: instead
of considering each player as drawn independently, we now draw the set of player values from
a joint distribution. We use Copulae to de�ne these joint distributions, a method which lets us
separate the speci�cation of the marginal distributions that each bidder obtains when viewing its
distribution in isolation, from the coupling structure which describes the joint structure among
these marginals. Formally, Sklar’s Theorem (Sklar, 1959) states that all multivariate comulative
distribution functions (CDFs) F (x1, . . . ,xd ) = P(X1 ≤ x1, . . . ,Xd ≤ xd ) can be represented as
F (x1, . . . ,xd ) = C (M1 (x1), . . . ,Md (xd )) where the Mi are the marginal CDFs in each dimension,
e.g. Mi (x ) = P(Xi ≤ x ), and C is a copula which is a joint CDF with uniform marginals. The
theorem also provides thatC will be unique if the Fi are continuous. The converse of the theorem
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Rule E�ciency Incentives Revenue
QUADRATIC 98.41% 10.91 95.19%

Improvement Over QUADRATIC Avg.
Best E�ciency FRACTIONAL∗(R=ZERO,W=πVCG,A=2) 0.24% 6.77% 2.65% 3.22%
Best Incentives FRACTIONAL∗(R=πSHAPLEY,W=BID,A=0.5) 0.20% 8.50% 2.61% 3.77%
Best Revenue FRACTIONAL∗(R=ZERO,W=π -1

SHAPLEY) 0.04% -0.61% 4.00% 1.14%

Table 2: The results for DOMAIN(MD=UNIFORM,Corr=SAME). The �rst row is the performance of
QUADRATIC relative to VCG. The subsequent rows show the top rules by each dimension.

lets us easily create multi-dimensional models by combining a set of marginal distributions Mi
with a copula C to create a joint distribution C (M1 (x1), ·,Md (xd )). In this section we consider
several choices for C , in 5.3 we consider choices for Mi , and �nally in 5.4 we consider the cross
product of these choices.

To model correlation, we adopt standard Gaussian copulae, which use a multivariate normal
distribution for the coupling function. We consider two correlation structures: (a) SAME which
establishes correlation between both bidders interested in the same item and (b) CROSS which
establishes correlation between the local players.9 In both cases the correlation constant is 0.5.

Results for SAME side correlation are provided in Table 2. The third row of the table illustrates
that a rule that is very good by one dimension, may be worse on others. We will seek to address
this in Section 5.5 by �nding good all-rounders. Moreover, each dimension yields a distinct best
rule in this domain. We also investigated cross-side correlation and varying the intensity of the
correlation, results of which we include in Appendix B.

5.3. LLG with BETA Marginals (Uncorrelated)

Beta(3,1/3}

Beta(3,5/3)

Beta(1/3,1/3)

Beta(3,3)

Beta(5/3,3)

0.2 0.4 0.6 0.8 1.0

1

2

3

4

Figure 2: The various BETA marginal distributions we consider.

9Ausubel and Baranov (2013) consider a form of correlation where the local players are either exactly the same, or
otherwise drawn independently. This approach is amenable to their form of theoretical analysis but is much less
natural than approach taken here.
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As is common practice, we employ a BETA distribution for our marginals as it will adopt a
diverse set of shapes that are similar to many familiar distributions with just two parameters.10

We consider the application of several parameterizations of BETA distributions to the local players
as illustrated in Figure 2. We note that once one employs a skewed distribution, the relative bidder
strength between the local and global players may no longer match that of the UNIFORM case. To
address this, we linearly calibrated the distributions (unless explicitly mentioned) so as to ensure
that the expected relative strength of the local and global players is identical to the UNIFORM case.
We also experimented with uncalibrated domains, which we include in Appendices E and F.

Rule E�ciency Incentives Revenue
QUADRATIC 97.79% 29.49 88.24%

Improvement Over QUADRATIC Avg.
Best E�ciency FRACTIONAL∗(R=πM

SHAPLEY,W=π
-1
VCG,A=2) 1.20% 24.80% 13.90% 13.30%

Best Incentives FRACTIONAL∗(R=pMSHAPLEY,W=p
-1
SHAPLEY,A=3) 1.10% 25.70% 12.30% 13.03%

Best Revenue FRACTIONAL∗(R=BID,W=pSHAPLEY,A=2) 1.00% 7.00% 15.80% 7.93%

Table 3: The results for DOMAIN(MD=BETA(3,1/3)). The �rst row is the performance of QUADRATIC

relative to VCG. The subsequent rows show the top rules by each dimension.

Table 3 provides results for DOMAIN(MD=BETA(3,1/3)), which is an example of the types of results
we see in domains with skewed marginals. We again observe that a di�erent rule is optimal
for each dimension. However, all three rules perform quite well in all dimensions, relative to
QUADRATIC. Results for the other distributions are provided in Appendix C.

5.4. Maximum Improvements Relative to �adratic

Rule E�ciency Incentives Revenue
QUADRATIC 95.00% 29.73 143.59%

Improvement Over QUADRATIC Avg.
Best E�ciency FRACTIONAL∗(R=BID,W=πSHAPLEY,A=2) 4.00% 47.20% 10.00% 20.40%
Best Incentives FRACTIONAL∗(R=BID,W=πSHAPLEY,A=2) 4.00% 47.20% 10.00% 20.40%
Best Revenue FRACTIONAL∗(R=BID,W=πSHAPLEY,A=2) 4.00% 47.20% 10.00% 20.40%

Table 4: The results for DOMAIN(MD=BETA(3,1/3),Corr=CROSS,UNCALIBRATED). The �rst row is the
performance of QUADRATIC relative to VCG. The subsequent rows show the top rules by
each dimension.

As discussed in Section 5.2, modeling the joint distribution of value among the players using
a copulae lets us mix-and-match between various marginal distributions and various types of

10 Ausubel and Baranov (2013) consider a distribution very similar to BETA(a,0), but they are limited to Pareto-like
shapes.
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correlation among these distributions. We have investigated the full cross product of correlations
we discussed in Section 5.2 with the set of marginal distributions discussed in Section 5.3. The
full set of results is presented in Appendix D.

VCG

Quadratic

Fractional*(R  Zero,W  Equal)

Fractional*(R  Zero,W  pVCG )

0.2 0.4 0.6 0.8 1.0
v

0.2

0.4

0.6

0.8

1.0

v

Figure 3: The BNE strategies in DOMAIN(MD =
UNIFORM,Corr = CROSSLARGE). Shown
are the BNE strategies for QUADRATIC,
FRACTIONAL∗(R = ZERO,W = EQUAL), and
FRACTIONAL∗(R=pVCG,W=EQUAL).

Here, we brie�y point towards those rules
that achieve the largest improvement over
QUADRATIC, across all domains. In terms of
e�ciency, FRACTIONAL∗(R = BID,W = πSHAPLEY,
A = 2.0) achieves a 4.00% improvement over
QUADRATIC in DOMAIN(MD = BETA(3,1/3),Corr =
CROSS,UNCALIBRATED) (see Table 4). Consider-
ing the fact that many large-scale CAs allo-
cate resources worth billions of dollars, an e�-
ciency improvement of this magnitude is very
signi�cant. Note that the same rule, in the
same domain, also achieves an incentive im-
provement of 47.2%, demonstrating that core-
selecting rules exist whose equilibrium strate-
gies are signi�cantly closer to truthful than
QUADRATIC. This performance is even exceeded
by FRACTIONAL∗(R=ZERO,W=EQUAL) in the do-
main DOMAIN(MD=UNIFORM,Corr=CROSSLARGE), where this rule achieves an incentive improvement
of 48.25% over QUADRATIC. In terms of revenue, FRACTIONAL∗(R=BIDM,W=pSHAPLEY,A=2) achieves a
23.4% improvement over QUADRATIC in DOMAIN(MD=BETA(3,1/3),Corr=CROSS).

To illustrate the shape of the BNEs of di�erent rules, Figure 3 shows the BNE strategies for
four payment rules for DOMAIN(MD=UNIFORM,Corr=CROSSLARGE). It is easy to see how much better
FRACTIONAL∗(R=ZERO,W=EQUAL) is compared to QUADRATIC. Additionally, we also plot one of the
worst-performing rules in this domain, i.e., FRACTIONAL∗(R=ZERO,W=pVCG). Note how just changing
one parameter of the rule (the weight) turns the rule from a top-performer into a very badly-
performing rule. In the next section, we will search for good all-rounder rules, i.e., rules that
perform very well across all 29 domains.

5.5. Best All-Rounder Rules

In the previous section, we have evaluated our rules one domain at a time. When auctioneers have
good information about their domain structure this enables the selection of very high-performing
rules, even if these rules perform poorly elsewhere in the domain space. However, in practice
auctioneers may not know the exact structure of the domain in which they are operating. Ac-
cordingly, we may seek good “all-rounder” rules that are widely applicable.

Di�erent auctioneers might reasonably place di�erent emphasis on each of our evaluation di-
mensions. In the absence of such knowledge, we opt to take a simple average over all three
dimensions and then rank our rules by this average. Table 5 shows the top 20. Here we see that
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E�ciency Incentives Revenue
QUADRATIC 97.71% 17.66 63.72%

Best All-Rounder Rules Avg. Improvement over QUADRATIC Avg.
FRACTIONAL∗(R=πM

SHAPLEY,W=π
-1
VCG,A=2) 0.91% 17.83% 6.25% 8.33%

FRACTIONAL∗(R=ZERO,W=πVCG,A=0.5) 0.92% 17.17% 6.57% 8.22%
FRACTIONAL∗(R=ZERO,W=πSHAPLEY,A=0.5) 0.86% 17.17% 5.90% 7.98%
FRACTIONAL∗(R=πVCG,W=πSHAPLEY) 0.86% 17.15% 5.86% 7.96%
FRACTIONAL∗(R=πM

SHAPLEY,W=π
-1
SHAPLEY) 0.87% 17.10% 5.87% 7.94%

FRACTIONAL∗(R=πM
VCG,W=π

-1
VCG) 0.85% 16.92% 5.73% 7.83%

FRACTIONAL∗(R=πVCG,W=πVCG) 0.85% 16.92% 5.73% 7.83%
FRACTIONAL∗(R=πSHAPLEY,W=πVCG,A=2) 0.84% 16.77% 5.47% 7.69%
FRACTIONAL∗(R=pMSHAPLEY,W=BID-1,A=3) 0.82% 16.74% 5.05% 7.54%
FRACTIONAL∗(R=πVCG,W=BID) 0.80% 16.30% 5.39% 7.50%
FRACTIONAL∗(R=pVCG,W=p

-1
SHAPLEY) 0.82% 16.30% 5.34% 7.49%

FRACTIONAL∗(R=pMSHAPLEY,W=p
-1
SHAPLEY,A=3) 0.81% 16.60% 5.00% 7.47%

FRACTIONAL∗(R=ZERO,W=BID,A=0.5) 0.79% 16.23% 5.35% 7.46%
FRACTIONAL∗(R=pMSHAPLEY,W=π -1

SHAPLEY,A=3) 0.81% 16.59% 4.96% 7.46%
FRACTIONAL∗(R=pVCG,W=BID-1) 0.80% 16.10% 5.16% 7.35%
FRACTIONAL∗(R=πM

SHAPLEY,W=π
-1
VCG) 0.77% 15.69% 5.13% 7.20%

FRACTIONAL∗(R=πVCG,W=pSHAPLEY) 0.76% 15.64% 5.10% 7.17%
FRACTIONAL∗(R=pVCG,W=π -1

VCG,A=2) 0.79% 15.72% 4.94% 7.15%
FRACTIONAL∗(R=πM

SHAPLEY,W=
p-1
SHAPLEY,A=0.5) 0.77% 15.42% 5.14% 7.11%

FRACTIONAL∗(R=ZERO,W=pSHAPLEY,A=0.5) 0.75% 15.44% 5.01% 7.07%

Table 5: Results showing the top 20 all-rounder rules. The �rst row is the average performance of
QUADRATIC over all 29 domains. The subsequent rows show the top rules by their average
improvement over QUADRATIC. Rules that beat quadratic in every dimension in every
domain are highlighted in grey.

the best rule, a πM
SHAPLEY-based rule, is able to achieve an 8.33% average improvement (across all

three dimensions) over QUADRATIC, across all 29 domains.
Note that three of those 20 rules actually beat QUADRATIC in every dimension in every domain;

those rules are highlighted in grey in Table 5. The other rules typically beat QUADRATIC in most
(but not all) of the 29 domains (e.g., on 26, 27, or 28 domains). However, we do not consider it
to be an exclusion criterion if a rule loses to QUADRATIC in one or multiple domains. In fact, we
�nd that QUADRATIC actually performs quite well in some domains, where it is almost impossible
to beat. It would not make sense to restrict our search for good all-rounder rules to only those
that beat QUADRATIC everywhere.

Looking at Table 5 in more detail, we observe that Shapley-based rules are ubiquitous. Indeed,
all three rules that beat QUADRATIC everywhere are Shapley-based. This is a fascinating �nding,
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as Shapley-based reference points or weights had previously not been considered for the design
of core-selecting payment rules. Looking into the calculation of the Shapley value in more detail,
it is intuitive that the Shapley value captures a “fair” distribution of the surplus (and thus may
naturally serve as a good reference point), while at the same time being somewhat robust against
manipulations. However, understanding the exact way in which the Shapley value-based rules
drive incentives (and then e�ciency and revenue) requires a more detailed analysis of the indi-
vidual rules, which is beyond the scope of this paper but which is an interesting subject for future
work.

The Shapley-based rules are also particularly noteworthy from a computational point-of-view
because computing the Shapley value is #P-hard in general games. Thus, we currently only have
algorithms that have run-time exponential in the number of players. For the LLG domain, this
is not a problem, but in larger domains, this computational complexity becomes prohibitively
expensive, and consequently we must omit the Shapley-based rules from our analysis of a much
larger domain, LLLLGG, in the next section.

Taking a broader view at the rules in Table 5 (and plotting and analyzing the corresponding
BNEs), we observed a certain pattern: the rules that performed best tended to be Large-style rules,
i.e., they favor bidders with large values. Of course, there are multiple ways to achieve this kind
of behavior. One way is exempli�ed via the second best rule in Table 5, i.e., FRACTIONAL∗(R=ZERO,

W=πVCG,A=0.5). This is an interesting rule as it uses a ZERO reference point, which heavily tilts
the payments in favor of the large players. Additionally, it uses πVCG as weights (which tilts it
back towards the small players) with a very small (0.5) ampli�cation. Note that an ampli�cation
smaller than 1 de-emphasizes the weights, thus making the rule more like QUADRATIC, but not
quite. Considering all parameters at once, the rule is a dampened version of QUADRATIC with ZERO

reference point. A rule that is very similar is FRACTIONAL∗(R=ZERO,W=BID,A=0.5) (in row 13), except
that it uses BID as the weight instead of πVCG. Given that πVCG = BID − pVCG, it is very intuitive
that these two rules perform very similar.

An alternative way to construct a Large-style rule is to use a reference point with a more
moderate impact/tilting, and instead create the e�ect via the weights. This is exempli�ed via
the rule FRACTIONAL∗(R=pVCG,W=BID-1), in row 15 of Table 5. This rule uses the standard pVCG
reference point, but combines it with BID-1 as weights. The inverted bid weighting has the e�ect
of heavily tilting the payments in favor of the large players, compared to the un-weighted version
of QUADRATIC. Again, a similar rule can be found in row 18, namely FRACTIONAL∗(R=pVCG,W=π -1

VCG,

A=2), which uses π -1
VCG instead of BID-1 as the weighting (which has a similar e�ect). Additionally,

this rule has a higher ampli�cation, thus slightly increasing the tilting e�ect due to the weights.
These four non-Shapley-based rules which we have just discussed are the subset of rules from

our LLG analysis which we will evaluate in the LLLLGG domain in the next section.

Remark 1 (Optimal Combination) Note that there is no such thing as an “optimal reference
point” or an “optimal set of weights.” Consider Table 5, which shows the Top-20 all-rounder rules.
Among those 20 rules, seven out of the nine reference points we consider show up. Similarly, eight out
of the eleven weights we consider show up. No clear winner seems to emerge. In fact, our results sug-
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gest that a search for an optimal reference point or an optimal set of weights seems to be misguided,
because it is really the combination of the reference point, the weights and the ampli�cation, that
determine whether a payment rule performs well or not. This is very well illustrated by the pair of
rules in Table 5 in Rows 6 and 7. As you can see, the two rules di�er from each other in that one uses
the mirrored reference point of the other as well as the inverted weight of the other. As our results
show, the two rules have the exact same statistics - in fact, these two rules are exactly the same, at
least in LLG. However, if we switch the weight of the �rst rule with the weight of the second rule,
we obtain a new, very bad rule, whose average improvement over QUADRATIC is -3.4%. Note that this
pattern we just described shows up throughout our results. This highlights the importance of choosing
the right combination of reference point, weights, and ampli�cation in the design of core-selecting
payment rules.

6. Results for LLLLGG

We next take the rules that worked well in the LLG domain and seek to �nd out if they work
in a larger domain, speci�cally the LLLLGG domain introduced by Bosshard et al. (2017) as a
generalization of LLG. This domain is signi�cantly more complex, but numerical BNEs can just
barely be computed for it using a powerful computational grid. Speci�cally, the LLLLGG domain
has 8 goods, and 6 bidders, each of which is interested in two bundles. There are four local
bidders, each interested in two distinct pairs of two goods. And there are two global bidders
interested in two distinct sets of 4 goods. There are signi�cant symmetries in the domain that
reduce the complexity of the strategy space. Consequently, the strategies of the local players can

Rule E�ciency Incentives Revenue
QUADRATIC 99.2% 0.54 1.07%

Improvement Over QUADRATIC Avg.
FRACTIONAL∗(R=pVCG,W=π -1

VCG,A=2) 0.61% 45.67% 3.65% 16.64%
FRACTIONAL∗(R=pVCG,W=BID-1) 0.52% 42.95% 2.69% 15.39%
FRACTIONAL∗(R=ZERO,W=πVCG,A=0.5) 0.37% 40.76% 2.00% 14.38%
FRACTIONAL∗(R=ZERO,W=BID,A=0.5) 0.38% 40.77% 1.96% 14.37%
FRACTIONAL∗(R=BID,W=pVCG,A=5) 0.24% -22.44% -2.54% -8.25%
Proxy -4.41% -107.62% 15.26% -32.26%
Proportional -3.59% -95.25% -11.72% -36.85%
First Price -2.80% -169.94% -7.91% -60.22%

Table 6: Shown are the results of running rules in the much larger LLLLGG domain. The �rst
row is the performance of QUADRATIC relative to VCG. Next we show four of our best all-
rounder rules from LLG, followed by one of the worst rules found in LLG. At the bottom
we present the results for three commonly-studied non-MRC rules.
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(a) The �rst strategy of the local
player.

(b) The second strategy of the lo-
cal player.

(c) The �rst strategy of the global
player; her second strategy is
symmetric.

Figure 4: BNE strategies for the LLLLGG domain.

be represented as two 2D surfaces, and the strategy of the global player can be represented as a
pair of symmetric 2D surfaces (which uni�es their computation).

Each local bidder in LLLLGG draws a value for each bundle from U [0,1], while the global
bidders draw their larger bundles fromU [0,2]. In the standard version of the domain, none of the
distributions are correlated or involve a complex marginal. We stick with this, because even the
standard version requires tens of thousands of core-hours to solve for a high quality numerical
BNE.

Accordingly, we have picked the four rules from LLG described in the previous section and
evaluated them in this much more complex domain, as presented in Table 6. It is important
to note that QUADRATIC is already almost e�cient in LLLLGG. This is consistent with our LLG
results, where correlation often co-occured with QUADRATIC being less than e�cient. Even still,
the selected high-performing rules from LLG did indeed generalize to the much harder LLLLGG
domain, and were still able to signi�cantly outperform QUADRATIC, especially on incentives and
revenue.

For comparison, we also include one of the worst rules from LLG in the table, namely
(FRACTIONAL∗(R=BID,W=pVCG,A=5)), and as expected, it performs poorly in LLLLGG as well. Lastly,
we also present several other commonly-studied payment rules (Proxy, Proportional and First
Price), even though they are not MRC-selecting payment rules. We see these rules perform sig-
ni�cantly worse than both QUADRATIC, and our low performing MRC rule from LLG.

To obtain an intuition for how the rules operate in LLLLGG, we have plotted the BNE strategies
in Figure 4. The �gure illustrates the BNE strategy pro�le of QUADRATIC in blue, and the BNE
strategy pro�le for one of the high performing rules, FRACTIONAL∗(R=pVCG,W=π -1

VCG,A=2), in yellow.
We see that our rule induces a far more truthful strategy than QUADRATIC. It is informative to
observe how QUADRATIC induces players to both shade down a lot (especially for the local players)
and overbid (especially for the global players, when their value for bundle 2 is large). Notably,
our rule is signi�cantly more truthful for the local players when they have a large value for either
bundle. In Appendix G, we include a similar �gure that depicts the poorly performing rule as well,
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which induces shading and over-bidding even more drastically than QUADRATIC. Overall, the rules
and the intuitions we have obtained from LLG translate well to the far more complex LLLLGG
setting.

7. Conclusion

In this paper, we have presented a computational search approach for �nding good core-selecting
payment rules. Using a suitable parametrization of the payment rule design space, we have been
able to systematically search through this space and identify very good rules that outperform the
commonly-used Quadratic rule on each dimension (e�ciency, incentives, and revenue).

We have followed a two-step approach. First, we have studied the well-known but stylized LLG
domain, which is amenable to an extensive search through our rule space. Within this domain,
we have identi�ed a set of 20 very good all-rounder rules which beat QUADRATIC by a signi�cant
margin across all domains (on average). Out of those, we have selected four rules for evaluation in
the larger LLLLGG domain, and we have demonstrated that those rules still perform better than
QUADRATIC. In contrast, other benchmark rules from the literature perform worse than QUADRATIC

in LLLLG. Thus, we have shown a certain degree of generalizability of our overall design approach,
and we have demonstrated the robustness of the new rules we have identi�ed.

In terms of mechanism design, one of our important �ndings from this work is that previous
approaches that have tried to optimize core-selecting payment rules by modifying only the ref-
erence point or the weights may have been misguided. According to our results, it is the perfect
combination of reference points, weights, and ampli�cation, that determine whether a rule is good
or bad. In fact, we have shown that small local changes to a well-performing rule typically turns
it into a badly-performing rule. Thus, our results demonstrate how complex and intricate it is to
�nd good core-selecting payment rules.

In terms of our computational search approach, we believe that our work illustrates the power
of an automated search for a good mechanism, rather than designing it by hand. The design of
core-selecting rules lends itself to this approach, because the design space can be nicely param-
eterized, and then searched through. However, computational complexity is a serious concern,
and future work should thus explore smart ways to scale this approach up to even larger settings.

Interestingly, computational complexity was also a concern for the design of the payment rules
themselves. Some of our most promising rules were based on the Shapley value which is too
computationally expensive to compute exactly in large domains. There exists some work on
algorithms for approximating the Shapley value (e.g., exploiting some structure in the problem).
Future work should evaluate the impact of using an approximate Shapley value instead of the
“exact” Shapley value in our rules. Our estimate is that the impact should be small.

Going forward, we hope that other researchers may also consider using a computational search
approach for similar auction design questions. Orthogonally, we hope that some of the very
good all-rounder rules we have identi�ed in our search may spur new theoretical research, new
computational research, or that they may be considered for implementation in practice.
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Appendix

Results For All Distributions

In Section 5, we introduce variants of the LLG domain in which we analyze our payment rules.
In the following sections we present the best rules for each of these domains.

We note the number of domains in this set, 29, is slightly smaller than the full cross prod-
uct of all the domain features we have considered. This is because the BNE algorithm did not
converge to a very high degree of tolerance (0.1%) on su�ciently many rules that we felt we
could generalize from the results. Our threshold for this was that at least 1/3 of the rules (i.e.,
203) had to converge. The threshold was not met for the domains DOMAIN(MD=BETA(3,1/3),Corr=
SAME),DOMAIN(MD=BETA(5/3,3)),DOMAIN(MD=BETA(5/3,3)),DOMAIN(MD=BETA(3,5/3)),DOMAIN(MD=
BETA(3,5/3)),DOMAIN(MD=BETA(3,3)). Additionally QUADRATIC failed to converge on DOMAIN(MD=
BETA(1/3,1/3),Corr=SAME) so we could not compare the other rules to the benchmark rule. Finally,
we also excluded all variations of DOMAIN(MD=BETA(1/3,3)), which is an exponentially left-skewed
distribution. This is the reason why we only have �ve instead of six Beta distributions in Figure
2. The reason for excluding this domain is that it leads to pathological e�ects when evaluating
core-selecting payment rules. In the uncalibrated setting, VCG is almost always in the core, which
makes this an uninteresting case. In the calibrated setting, when a local bidder gets lucky and has
a high value, then the other local bidder still almost certainly has a very low value. This implies
that the high-valued bidder essentially has no ability to manipulate the core payment. In fact,
shading his bid might risk losing to the global bidder. Thus, the distribution of this domain com-
pletely determines the incentives of any core-selecting rule (which are all very close to truthful),
which renders comparing individual rules non-interesting.

A. UNIFORM Results

Rule E�ciency Incentives Revenue
QUADRATIC 98.03% 16.19 91.30%

Improvement Over QUADRATIC Avg.

Best E�ciency FRACTIONAL∗(R=πSHAPLEY,W=p
-1
VCG,A=2) 0.31% 3.90% 1.62% 1.94%

Best Incentives FRACTIONAL∗(R=πSHAPLEY,W=BID-1,A=10) 0.27% 5.13% 1.27% 2.22%
Best Revenue FRACTIONAL∗(R=πSHAPLEY,W=p

-1
VCG,A=2) 0.31% 3.90% 1.62% 1.94%

Table 7: The results for DOMAIN(MD=UNIFORM). The �rst row is the performance of QUADRATIC

relative to VCG. The subsequent rows show the top rules by each dimension.
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B. UNIFORM Marginals and Correlation Results

We investigated using both smaller, 0.25, and larger, 0.75, correlation constants in our copulae.
Results on individual domains are provided below:

B.1. Same-Side

Rule E�ciency Incentives Revenue
QUADRATIC 98.13% 14.11 93.14%

Improvement Over QUADRATIC Avg.

Best E�ciency FRACTIONAL∗(R=πSHAPLEY,W=p
-1
VCG,A=0.5) 0.34% 6.64% 3.09% 3.36%

Best Incentives FRACTIONAL∗(R=πM
SHAPLEY,W=π

-1
VCG,A=0.5) 0.31% 8.16% 2.50% 3.66%

Best Revenue FRACTIONAL∗(R=ZERO,W=EQUAL) 0.24% 2.00% 3.29% 1.84%

Table 8: The results forDOMAIN(MD=UNIFORM,Corr=SAMESMALL). The �rst row is the performance of
QUADRATIC relative to VCG. The subsequent rows show the top rules by each dimension.

Rule E�ciency Incentives Revenue
QUADRATIC 98.41% 10.91 95.19%

Improvement Over QUADRATIC Avg.
Best E�ciency FRACTIONAL∗(R=ZERO,W=πVCG,A=2) 0.24% 6.77% 2.65% 3.22%
Best Incentives FRACTIONAL∗(R=πSHAPLEY,W=BID,A=0.5) 0.20% 8.50% 2.61% 3.77%
Best Revenue FRACTIONAL∗(R=ZERO,W=π -1

SHAPLEY) 0.04% -0.61% 4.00% 1.14%

Table 9: The results for DOMAIN(MD=UNIFORM,Corr=SAME). The �rst row is the performance of
QUADRATIC relative to VCG. The subsequent rows show the top rules by each dimension.

Rule E�ciency Incentives Revenue
QUADRATIC 98.90% 6.16 98.37%

Improvement Over QUADRATIC Avg.

Best E�ciency FRACTIONAL∗(R=pSHAPLEY,W=p
-1
VCG,A=10) 0.17% 8.72% 1.74% 3.54%

Best Incentives FRACTIONAL∗(R=πM
SHAPLEY,W=πVCG,A=3) 0.14% 10.64% 2.36% 4.38%

Best Revenue FRACTIONAL∗(R=ZERO,W=p
-1
VCG,A=10) -0.09% 4.14% 2.54% 2.20%

Table 10: The results for DOMAIN(MD=UNIFORM,Corr=SAMELARGE). The �rst row is the performance
of QUADRATIC relative to VCG. The subsequent rows show the top rules by each dimen-
sion.
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B.2. Cross-Side

Rule E�ciency Incentives Revenue
QUADRATIC 97.87% 16.89 92.93%

Improvement Over QUADRATIC Avg.
Best E�ciency FRACTIONAL∗(R=πM

VCG,W=π
-1
SHAPLEY) 0.57% 11.40% 2.10% 4.69%

Best Incentives FRACTIONAL∗(R=πM
SHAPLEY,W=π

-1
SHAPLEY) 0.55% 12.09% 2.13% 4.92%

Best Revenue FRACTIONAL∗(R=πVCG,W=πSHAPLEY) 0.56% 11.92% 2.17% 4.88%

Table 11: The results for DOMAIN(MD=UNIFORM,Corr=CROSSSMALL). The �rst row is the perfor-
mance of QUADRATIC relative to VCG. The subsequent rows show the top rules by each
dimension.

Rule E�ciency Incentives Revenue
QUADRATIC 97.69% 17.69 95.27%

Improvement Over QUADRATIC Avg.
Best E�ciency FRACTIONAL∗(R=πM

SHAPLEY,W=π
-1
VCG,A=3) 1.06% 23.31% 4.29% 9.55%

Best Incentives FRACTIONAL∗(R=ZERO,W=πVCG,A=0.5) 1.04% 23.77% 4.20% 9.67%
Best Revenue FRACTIONAL∗(R=πM

SHAPLEY,W=π
-1
VCG,A=3) 1.06% 23.31% 4.29% 9.55%

Table 12: The results for DOMAIN(MD=UNIFORM,Corr=CROSS). The �rst row is the performance of
QUADRATIC relative to VCG. The subsequent rows show the top rules by each dimension.

Rule E�ciency Incentives Revenue
QUADRATIC 97.35% 18.92 97.51%

Improvement Over QUADRATIC Avg.
Best E�ciency FRACTIONAL∗(R=ZERO,W=EQUAL) 2.02% 48.25% 11.88% 20.72%
Best Incentives FRACTIONAL∗(R=ZERO,W=EQUAL) 2.02% 48.25% 11.88% 20.72%
Best Revenue FRACTIONAL∗(R=ZERO,W=EQUAL) 2.02% 48.25% 11.88% 20.72%

Table 13: The results for DOMAIN(MD=UNIFORM,Corr=CROSSLARGE). The �rst row is the perfor-
mance of QUADRATIC relative to VCG. The subsequent rows show the top rules by each
dimension.
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C. BETA Marginals and No Correlation Results

Rule E�ciency Incentives Revenue
QUADRATIC 97.78% 21.53 88.63%

Improvement Over QUADRATIC Avg.
Best E�ciency FRACTIONAL∗(R=pVCG,W=BID-1) 0.62% 9.71% 5.86% 5.40%
Best Incentives FRACTIONAL∗(R=πVCG,W=pSHAPLEY) 0.58% 11.04% 5.09% 5.57%
Best Revenue FRACTIONAL∗(R=pVCG,W=π -1

VCG,A=3) 0.55% 3.64% 6.02% 3.40%

Table 14: The results for DOMAIN(MD=BETA(3,5/3)). The �rst row is the performance of QUADRATIC

relative to VCG. The subsequent rows show the top rules by each dimension.

Rule E�ciency Incentives Revenue
QUADRATIC 96.77% 21.53 101.20%

Improvement Over QUADRATIC Avg.
Best E�ciency FRACTIONAL∗(R=πVCG,W=pVCG,A=2) 0.94% 11.13% 4.62% 5.56%
Best Incentives FRACTIONAL∗(R=πVCG,W=pVCG,A=2) 0.94% 11.13% 4.62% 5.56%
Best Revenue FRACTIONAL∗(R=πVCG,W=pVCG,A=2) 0.94% 11.13% 4.62% 5.56%

Table 15: The results for DOMAIN(MD=BETA(3,5/3),UNCALIBRATED). The �rst row is the performance
of QUADRATIC relative to VCG. The subsequent rows show the top rules by each dimen-
sion.

Rule E�ciency Incentives Revenue
QUADRATIC 98.39% 15.18 97.26%

Improvement Over QUADRATIC Avg.
Best E�ciency FRACTIONAL∗(R=pSHAPLEY,W=πVCG,A=5) 0.43% 9.95% 2.55% 4.31%
Best Incentives FRACTIONAL∗(R=πSHAPLEY,W=BID-1,A=3) 0.39% 10.47% 2.21% 4.36%
Best Revenue FRACTIONAL∗(R=πSHAPLEY,W=πVCG,A=5) 0.43% 7.21% 3.00% 3.55%

Table 16: The results for DOMAIN(MD=BETA(1/3,1/3),UNCALIBRATED∗). The �rst row is the perfor-
mance of QUADRATIC relative to VCG. The subsequent rows show the top rules by each
dimension.
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Rule E�ciency Incentives Revenue
QUADRATIC 97.80% 16.71 88.67%

Improvement Over QUADRATIC Avg.
Best E�ciency FRACTIONAL∗(R=pVCG,W=π -1

SHAPLEY) 0.44% 6.69% 3.57% 3.57%
Best Incentives FRACTIONAL∗(R=pVCG,W=π -1

VCG) 0.39% 7.58% 2.97% 3.65%
Best Revenue FRACTIONAL∗(R=pVCG,W=π -1

SHAPLEY) 0.44% 6.69% 3.57% 3.57%

Table 17: The results for DOMAIN(MD=BETA(3,3),UNCALIBRATED). The �rst row is the performance of
QUADRATIC relative to VCG. The subsequent rows show the top rules by each dimension.

Rule E�ciency Incentives Revenue
QUADRATIC 95.08% 29.39 141.89%

Improvement Over QUADRATIC Avg.
Best E�ciency FRACTIONAL∗(R=πM

SHAPLEY,W=π
-1
VCG,A=2) 2.70% 23.60% 6.60% 10.97%

Best Incentives FRACTIONAL∗(R=pMSHAPLEY,W=p
-1
SHAPLEY,A=3) 2.60% 25.00% 6.30% 11.30%

Best Revenue FRACTIONAL∗(R=πM
SHAPLEY,W=π

-1
VCG,A=2) 2.70% 23.60% 6.60% 10.97%

Table 18: The results for DOMAIN(MD=BETA(3,1/3),UNCALIBRATED). The �rst row is the performance
of QUADRATIC relative to VCG. The subsequent rows show the top rules by each dimen-
sion.

Rule E�ciency Incentives Revenue
QUADRATIC 97.79% 29.49 88.24%

Improvement Over QUADRATIC Avg.
Best E�ciency FRACTIONAL∗(R=πM

SHAPLEY,W=π
-1
VCG,A=2) 1.20% 24.80% 13.90% 13.30%

Best Incentives FRACTIONAL∗(R=pMSHAPLEY,W=p
-1
SHAPLEY,A=3) 1.10% 25.70% 12.30% 13.03%

Best Revenue FRACTIONAL∗(R=BID,W=pSHAPLEY,A=2) 1.00% 7.00% 15.80% 7.93%

Table 19: The results for DOMAIN(MD=BETA(3,1/3)). The �rst row is the performance of QUADRATIC

relative to VCG. The subsequent rows show the top rules by each dimension.
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Rule E�ciency Incentives Revenue
QUADRATIC 97.95% 11.71 89.93%

Improvement Over QUADRATIC Avg.

Best E�ciency FRACTIONAL∗(R=πSHAPLEY,W=p
-1
VCG,A=10) 0.27% 4.61% 1.08% 1.99%

Best Incentives FRACTIONAL∗(R=πSHAPLEY,W=p
-1
VCG,A=10) 0.27% 4.61% 1.08% 1.99%

Best Revenue FRACTIONAL∗(R=πSHAPLEY,W=p
-1
VCG,A=10) 0.27% 4.61% 1.08% 1.99%

Table 20: The results for DOMAIN(MD=BETA(5/3,3)). The �rst row is the performance of QUADRATIC

relative to VCG. The subsequent rows show the top rules by each dimension.

Rule E�ciency Incentives Revenue
QUADRATIC 98.83% 11.68 80.99%

Improvement Over QUADRATIC Avg.

Best E�ciency FRACTIONAL∗(R=πSHAPLEY,W=p
-1
VCG,A=10) 0.12% 3.24% 1.59% 1.65%

Best Incentives FRACTIONAL∗(R=πSHAPLEY,W=p
-1
VCG,A=10) 0.12% 3.24% 1.59% 1.65%

Best Revenue FRACTIONAL∗(R=πSHAPLEY,W=p
-1
VCG,A=10) 0.12% 3.24% 1.59% 1.65%

Table 21: The results for DOMAIN(MD=BETA(5/3,3),UNCALIBRATED). The �rst row is the performance
of QUADRATIC relative to VCG. The subsequent rows show the top rules by each dimen-
sion.

D. BETA Marginals and Correlation Results

D.1. Same-Side

Rule E�ciency Incentives Revenue
QUADRATIC 97.96% 17.06 94.23%

Improvement Over QUADRATIC Avg.

Best E�ciency FRACTIONAL∗(R=BIDM,W=p
-1
VCG) 0.55% 15.05% 10.24% 8.61%

Best Incentives FRACTIONAL∗(R=BID,W=pVCG,A=0.5) 0.52% 15.86% 8.41% 8.26%
Best Revenue FRACTIONAL∗(R=ZERO,W=π -1

SHAPLEY,A=3) 0.01% -7.38% 13.31% 1.98%

Table 22: The results for DOMAIN(MD=BETA(3,5/3),Corr=SAME). The �rst row is the performance of
QUADRATIC relative to VCG. The subsequent rows show the top rules by each dimension.
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Rule E�ciency Incentives Revenue
QUADRATIC 98.04% 12.69 94.21%

Improvement Over QUADRATIC Avg.

Best E�ciency FRACTIONAL∗(R=πSHAPLEY,W=p
-1
VCG,A=10) 0.42% 10.28% 7.64% 6.11%

Best Incentives FRACTIONAL∗(R=BIDM,W=p
-1
VCG,A=0.5) 0.37% 13.29% 7.01% 6.89%

Best Revenue FRACTIONAL∗(R=ZERO,W=p
-1
SHAPLEY,A=2) 0.11% -0.34% 10.56% 3.44%

Table 23: The results for DOMAIN(MD=BETA(3,3),Corr= SAME,UNCALIBRATED). The �rst row is the
performance of QUADRATIC relative to VCG. The subsequent rows show the top rules by
each dimension.

D.2. Cross-Side

Rule E�ciency Incentives Revenue
QUADRATIC 97.65% 22.29 89.60%

Improvement Over QUADRATIC Avg.
Best E�ciency FRACTIONAL∗(R=ZERO,W=EQUAL) 1.55% 36.92% 15.28% 17.92%
Best Incentives FRACTIONAL∗(R=BID,W=πSHAPLEY,A=2) 1.53% 38.14% 14.17% 17.95%
Best Revenue FRACTIONAL∗(R=πVCG,W=BID,A=2) 1.50% 33.60% 15.50% 16.87%

Table 25: The results for DOMAIN(MD=BETA(3,5/3),Corr=CROSS). The �rst row is the performance of
QUADRATIC relative to VCG. The subsequent rows show the top rules by each dimension.

Rule E�ciency Incentives Revenue
QUADRATIC 97.76% 29.78 88.39%

Improvement Over QUADRATIC Avg.
Best E�ciency FRACTIONAL∗(R=BID,W=BID,A=2) 1.70% 45.10% 23.30% 23.37%
Best Incentives FRACTIONAL∗(R=πM

VCG,W=π
-1
SHAPLEY) 1.70% 47.70% 20.80% 23.40%

Best Revenue FRACTIONAL∗(R=BIDM,W=p
-1
SHAPLEY,A=2) 1.70% 41.80% 23.40% 22.30%

Table 24: The results for DOMAIN(MD=BETA(3,1/3),Corr=CROSS). The �rst row is the performance of
QUADRATIC relative to VCG. The subsequent rows show the top rules by each dimension.
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Rule E�ciency Incentives Revenue
QUADRATIC 97.67% 18.22 102.48%

Improvement Over QUADRATIC Avg.
Best E�ciency FRACTIONAL∗(R=πM

SHAPLEY,W=π
-1
VCG,A=3) 1.29% 26.85% 4.39% 10.84%

Best Incentives FRACTIONAL∗(R=πM
SHAPLEY,W=π

-1
VCG,A=3) 1.29% 26.85% 4.39% 10.84%

Best Revenue FRACTIONAL∗(R=πM
SHAPLEY,W=π

-1
VCG,A=3) 1.29% 26.85% 4.39% 10.84%

Table 26: The results for DOMAIN(MD=BETA(1/3,1/3),Corr=CROSS,UNCALIBRATED). The �rst row is the
performance of QUADRATIC relative to VCG. The subsequent rows show the top rules by
each dimension.

Rule E�ciency Incentives Revenue
QUADRATIC 97.64% 17.44 90.39%

Improvement Over QUADRATIC Avg.
Best E�ciency FRACTIONAL∗(R=ZERO,W=EQUAL) 1.45% 34.24% 12.36% 16.02%
Best Incentives FRACTIONAL∗(R=πM

SHAPLEY,W=π
-1
VCG,A=3) 1.43% 35.11% 11.76% 16.10%

Best Revenue FRACTIONAL∗(R=ZERO,W=EQUAL) 1.45% 34.24% 12.36% 16.02%

Table 27: The results for DOMAIN(MD=BETA(3,3),Corr=CROSS,UNCALIBRATED). The �rst row is the
performance of QUADRATIC relative to VCG. The subsequent rows show the top rules by
each dimension.

Rule E�ciency Incentives Revenue
QUADRATIC 97.68% 12.66 94.26%

Improvement Over QUADRATIC Avg.
Best E�ciency FRACTIONAL∗(R=ZERO,W=πVCG,A=0.5) 1.01% 24.18% 4.03% 9.74%
Best Incentives FRACTIONAL∗(R=ZERO,W=πVCG,A=0.5) 1.01% 24.18% 4.03% 9.74%
Best Revenue FRACTIONAL∗(R=ZERO,W=πSHAPLEY,A=0.5) 0.97% 23.27% 4.33% 9.52%

Table 28: The results for DOMAIN(MD=BETA(5/3,3),Corr=CROSS). The �rst row is the performance of
QUADRATIC relative to VCG. The subsequent rows show the top rules by each dimension.
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E. Uncalibrated BETA Marginals and No Correlation Results

Rule E�ciency Incentives Revenue
QUADRATIC 95.08% 29.39 141.89%

Improvement Over QUADRATIC Avg.
Best E�ciency FRACTIONAL∗(R=πM

SHAPLEY,W=π
-1
VCG,A=2) 2.70% 23.60% 6.60% 10.97%

Best Incentives FRACTIONAL∗(R=pMSHAPLEY,W=p
-1
SHAPLEY,A=3) 2.60% 25.00% 6.30% 11.30%

Best Revenue FRACTIONAL∗(R=πM
SHAPLEY,W=π

-1
VCG,A=2) 2.70% 23.60% 6.60% 10.97%

Table 29: The results for DOMAIN(MD=BETA(3,1/3),UNCALIBRATED). The �rst row is the performance
of QUADRATIC relative to VCG. The subsequent rows show the top rules by each dimen-
sion.

Rule E�ciency Incentives Revenue
QUADRATIC 96.77% 21.53 101.20%

Improvement Over QUADRATIC Avg.
Best E�ciency FRACTIONAL∗(R=πVCG,W=pVCG,A=2) 0.94% 11.13% 4.62% 5.56%
Best Incentives FRACTIONAL∗(R=πVCG,W=pVCG,A=2) 0.94% 11.13% 4.62% 5.56%
Best Revenue FRACTIONAL∗(R=πVCG,W=pVCG,A=2) 0.94% 11.13% 4.62% 5.56%

Table 30: The results for DOMAIN(MD=BETA(3,5/3),UNCALIBRATED). The �rst row is the performance
of QUADRATIC relative to VCG. The subsequent rows show the top rules by each dimen-
sion.

Rule E�ciency Incentives Revenue
QUADRATIC 98.83% 11.68 80.99%

Improvement Over QUADRATIC Avg.

Best E�ciency FRACTIONAL∗(R=πSHAPLEY,W=p
-1
VCG,A=10) 0.12% 3.24% 1.59% 1.65%

Best Incentives FRACTIONAL∗(R=πSHAPLEY,W=p
-1
VCG,A=10) 0.12% 3.24% 1.59% 1.65%

Best Revenue FRACTIONAL∗(R=πSHAPLEY,W=p
-1
VCG,A=10) 0.12% 3.24% 1.59% 1.65%

Table 31: The results for DOMAIN(MD=BETA(5/3,3),UNCALIBRATED). The �rst row is the performance
of QUADRATIC relative to VCG. The subsequent rows show the top rules by each dimen-
sion.

F. Uncalibrated BETA Marginals and Correlation Results
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Rule E�ciency Incentives Revenue
QUADRATIC 95.00% 29.73 143.59%

Improvement Over QUADRATIC Avg.
Best E�ciency FRACTIONAL∗(R=BID,W=πSHAPLEY,A=2) 4.00% 47.20% 10.00% 20.40%
Best Incentives FRACTIONAL∗(R=BID,W=πSHAPLEY,A=2) 4.00% 47.20% 10.00% 20.40%
Best Revenue FRACTIONAL∗(R=BID,W=πSHAPLEY,A=2) 4.00% 47.20% 10.00% 20.40%

Table 32: The results for DOMAIN(MD=BETA(3,1/3),Corr=CROSS,UNCALIBRATED). The �rst row is the
performance of QUADRATIC relative to VCG. The subsequent rows show the top rules by
each dimension.

Rule E�ciency Incentives Revenue
QUADRATIC 96.64% 22.11 103.92%

Improvement Over QUADRATIC Avg.
Best E�ciency FRACTIONAL∗(R=ZERO,W=EQUAL) 2.20% 35.84% 10.85% 16.29%
Best Incentives FRACTIONAL∗(R=BID,W=πSHAPLEY,A=2) 2.18% 37.44% 10.58% 16.73%
Best Revenue FRACTIONAL∗(R=ZERO,W=EQUAL) 2.20% 35.84% 10.85% 16.29%

Table 33: The results for DOMAIN(MD=BETA(3,5/3),Corr=CROSS,UNCALIBRATED). The �rst row is the
performance of QUADRATIC relative to VCG. The subsequent rows show the top rules by
each dimension.

Rule E�ciency Incentives Revenue
QUADRATIC 96.67% 17.93 107.77%

Improvement Over QUADRATIC Avg.
Best E�ciency FRACTIONAL∗(R=ZERO,W=πVCG,A=0.5) 0.97% 10.98% 6.97% 6.30%
Best Incentives FRACTIONAL∗(R=BIDM,W=BID-1,A=2) 0.91% 12.88% 6.17% 6.65%
Best Revenue FRACTIONAL∗(R=ZERO,W=BID-1) 0.69% 1.55% 8.96% 3.73%

Table 34: The results for DOMAIN(MD=BETA(3,5/3),Corr=SAME,UNCALIBRATED). The �rst row is the
performance of QUADRATIC relative to VCG. The subsequent rows show the top rules by
each dimension.
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Rule E�ciency Incentives Revenue
QUADRATIC 99.31% 7.14 88.33%

Improvement Over QUADRATIC Avg.

Best E�ciency FRACTIONAL∗(R=πVCG,W=p
-1
VCG,A=0.5) 0.05% 6.69% 2.05% 2.93%

Best Incentives FRACTIONAL∗(R=ZERO,W=pSHAPLEY,A=0.5) 0.01% 10.07% 4.39% 4.82%
Best Revenue FRACTIONAL∗(R=ZERO,W=BID-1,A=10) -0.12% -3.73% 6.93% 1.03%

Table 35: The results for DOMAIN(MD=BETA(5/3,3),Corr=SAME,UNCALIBRATED). The �rst row is the
performance of QUADRATIC relative to VCG. The subsequent rows show the top rules by
each dimension.

Rule E�ciency Incentives Revenue
QUADRATIC 98.65% 12.68 82.40%

Improvement Over QUADRATIC Avg.
Best E�ciency FRACTIONAL∗(R=pVCG,W=π -1

VCG,A=3) 0.62% 25.24% 7.46% 11.10%
Best Incentives FRACTIONAL∗(R=pVCG,W=π -1

VCG,A=3) 0.62% 25.24% 7.46% 11.10%
Best Revenue FRACTIONAL∗(R=ZERO,W=EQUAL) 0.62% 23.84% 7.62% 10.69%

Table 36: The results for DOMAIN(MD=BETA(5/3,3),Corr=CROSS,UNCALIBRATED). The �rst row is the
performance of QUADRATIC relative to VCG. The subsequent rows show the top rules by
each dimension.
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G. Robustness of the Generalization from LLG to LLLLGG

Below we present a �gure the results of a running one of the worst MRC rules we found in LLG
in the larger LLLLGG domain. From the �gure it is evident that just as we can �nd rules that
perform better than Quadratic in the MRC, we can also �nd rules that perform worse. And at
least pointwise, rules that tend to perform well in LLG also perform well in LLLLGG.

(a) The �rst strategy of the local
player.

(b) The second strategy of the lo-
cal player.

(c) The �rst strategy of the global
player; her second strategy is
symmetric.
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H. Pseudo-Code of BNE Algorithm

For details of the BNE algorithm, please see Bosshard et al. (2017). Here, we provide the pseudo-
code for the main parts of the algorithm for convenience.
Algorithm 0: Fictitious Play
Data: bidder’s value distributions Vi , utility functions ui
Result: ϵ-BNE strategy pro�le
s := truthful strategies
while not converged do

for each bidder i do
s ′i := empty piecewise linear function
for k = 1 to number of control points do

// Based on s ′i
choose a new value vi ∈ Vi
br := arg maxv̂ Ev−i [ui (vi ,v̂,s−i (v−i )) ]
v̂old := si (vi ) computed by interpolation
uold := ui (vi ,v̂old ,s−i (v−i ))
ubr := ui (vi ,br ,s−i (v−i ))
v̂new := update (v̂old ,br ,uold ,ubr )
add control point (vi ,v̂new ) to s ′i

end
end
s := s’

end
return s

Algorithm 1: Update Rule
Data: wmin ∈ R, wmax ∈ R,α ∈ R
Result: Merged strategy
Function update(Sc ∈ R, Ŝc ∈ R,Uc ∈ R,Ûc ∈ R)

// Adaptive weight

w = arctan(α · ( ÛcUc − 1)) · 2
π · (wmax −wmin) +wmin ∈ (wmin,wmax);

return Sc · (1 −w ) + Ŝc ·w ;
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