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ABSTRACT
Cloud computing providers must handle heterogeneous customer

workloads for resources such as (virtual) CPU or GPU cores. This is

particularly challenging if customers, who are already running a job

on a cluster, scale their resource usage up and down over time. The

provider therefore has to continuously decide whether she can add

additional workloads to a given cluster or if doing so would impact

existing workloads’ ability to scale. Currently, this is often done

using simple threshold policies to reserve large parts of each cluster,

which leads to low average utilization of the cluster. In this paper,

we propose more sophisticated policies for controlling admission

to a cluster and demonstrate that they significantly increase cluster

utilization. We first introduce the cluster admission problem and

formalize it as a constrained Partially Observable Markov Decision

Process (POMDP). As it is infeasible to solve the POMDP optimally,

we then systematically design heuristic admission policies that es-

timate moments of each workload’s distribution of future resource

usage. Via simulations we show that our admission policies lead

to a substantial improvement over the simple threshold policy. We

then evaluate how much further this can be improved with learned

or elicited prior information and how to incentivize users to provide

this information.

CCS CONCEPTS
• Computing methodologies → Partially-observable Markov de-
cision processes; Planning under uncertainty; • Computer systems
organization→ Cloud computing.
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1 INTRODUCTION
Cloud computing is a fast expanding market with high competi-

tion where small efficiency gains translate to multi-billion dollar

profits.
1
Nonetheless, most cloud clusters currently run at low av-

erage utilization (i.e., only a relatively low fraction of resources

1
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is actually used by customers). Some of this is caused by purely

technical limitations, such as the need to reserve capacity for node

failures or maintenance, outside factors such as fluctuations in over-

all demand, or inefficiencies in scheduling procedures, especially

if virtual machines (VMs) might change size or do not use all of

their requested capacity [28]. Another cause is the nature of many

modern workloads: highly connected tasks running on different

VMs that should be run on one cluster to minimize latency and

bandwidth use [5]. In practice, different VMs from one user are thus

bundled together into a deployment of interdependent workload.
In this paper, we pay special attention to the fact that, when the

workload of a deployment changes, it can request a scale out in the

form of additional VMs or shut some of its active VMs down. To get

a sense of the difficulty of this problem, consider that, over time,

the number of VMs needed by a specific deployment could vary by

a factor 10 or even 100, and a request to scale out should almost

always be accepted on the same cluster, as denying it would im-

pair the quality of the service, possibly alienating customers. This

means that providers face the difficult problem of deciding to which

cluster to assign a deployment, as a deployment which is small to-

day may, without warning, increase dramatically in size. Providers

consequently hold large parts of any cluster as idle reserves to

guarantee that only a very low percentage of these requests is ever

denied.

1.1 Cluster Admission Control
We reduce the problem of determining to which cluster to assign

a new deployment to the problem of determining, for a particular

cluster, whether it is safe to admit a deployment, or if doing so

would risk running out of capacity if the deployment scales [5].

While a lot of research has been done on scheduling inside the
cluster [22, 27, 29], the admission decision has not been well studied

before. Consequently, cloud providers are still often using simple

policies like thresholds that only depend on the current utilization

of a cluster.
2
These policies may seem reasonable, because the law

of large numbers suggests that the overall utilization carries most

information for large clusters. But as Cortez et al. [5] have shown,

a relatively small number of deployments account for most of the

utilization. This suggests that specific deployments have a larger

impact on the failure probability than may be apparent at first sight.

We formalize the cluster admission problem as a constrained

Partially Observable Markov Decision Process (POMDP) [23] where

each deployment behaves according to some stochastic process and

the controlling agent (the cloud provider) tries to maximize the

number of active compute cores without exceeding the cluster’s ca-

pacity. Since the exact stochastic processes of arriving deployments

are not known to the agent, it has to reason about the observed

2
This is common knowledge in the industry and was additionally confirmed to us in

communications with various domain experts. However, to the best of our knowledge,

there exists no publicly available written source.
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behavior. The large scale of the problem as well as the highly compli-

cated underlying stochastic processes make finding optimal policies

infeasible, even for the underlying (fully observable) MDP and with

limited look-ahead horizon.

1.2 Overview of Contributions
We present tailored heuristics to solve the cluster admission control

problem. For this, we first present a succinct mathematical formu-

lation of the cluster admission problem as faced by cloud providers

before defining the optimal policy as the solution to a constrained

POMDP. Since optimally solving this POMDP is not feasible, we

next propose a strategy for constructing heuristic policies via a

series of simplifying assumptions. These assumptions reduce the

highly branching look-ahead space down to the approximation of a

random variable using its moments. We then present the currently

used threshold policy that does not take probabilistic information

into account as well as two new policies that take successively

higher moments into account. We fit our model to data from a real-

world cloud computing center (Microsoft Azure internal jobs [5]).

Via simulations, we show that our higher moment policies produce

a 14% improvement over current practice, which can translate to

hundreds of millions of dollars of savings for large cloud providers.

Then we examine how the utilization of the cluster can further be

improved if more precise prior information about arriving deploy-

ments is available. We give a simple framework which captures

a notion of the quality of information available, and through ad-

ditional simulations quantify how the policies benefit from this

additional information. Finally, we present a new information elici-
tation approach, introducing a variance-based pricing rule to elicit

labels from users. This rule provides users with the right incentives

to (a) label their deployments properly (into high and low variance

deployments) and (b) structure their workloads in a way that helps

the cluster run more efficiently.

1.3 Related work
While studyingwhich deployments to admit to a cluster, we abstract

away the question of exactly which resources they should use.

Prior work on cluster scheduling and load balancing has already

studied these questions [22, 27]. Other work addresses a different

notion of admission control, namely how to manage queues for

workloads which will ultimately be deployed to that cluster [6].

Another line of work on scheduling looks at how multidimensional

resources can be fairly divided among deployments [10, 11, 14, 18].

There is also a literature that views scheduling through the lens of

stochastic online bin packing [4, 25], dealingwith issues of changing

workloads on overcommitted resources, but at smaller scales.

In this paper, we examine the value of learning from prior deploy-

ments. Other work has explored similar opportunities in the context

of resource planning and scheduling in analytics clusters [12]. There

is a large literature onmarket design challenges in the context of the

cloud [13]. Existing work has studied both, queueing models where

decisions are made online with no consideration of the future [1, 8],

and reservation models that assume very strong information about

the future [2]. Our work sits in an interesting intermediate position

where users may have rough information about the types of their

deployments.

Solving POMDPs is a well-studied problem [20, 24]. Unfortu-

nately, finding an optimal policy is known to be PSPACE-complete

even for finite-horizon problems [17]. Even finding ϵ-optimal poli-

cies is NP-hard for any fixed ϵ [16]. In our case, the problem is fur-

ther exacerbated by the existence of side constraints. Constrained

POMDPS are far less well studied than unconstrained POMDPS.

General (approximation) strategies proposed in the past include

linear programming [19], point-based value iteration [15], a mix

of online-look ahead and offline risk evaluation [26], and forward

search with pruning [21]. None of these approaches is efficiently

applicable when the state space of the underlying MDP is large or,

as in our case, partly continuous. While some work has addressed

continuous state space POMDPs [3, 9], none of this work is directly

applicable to a constrained problem of the size we are considering.

2 PRELIMINARIES
2.1 The cluster admission problem
We consider a single cluster in a cloud computing center. A cluster

consists of c cores that are available to perform work. c is also called
the cluster’s capacity. These cores are used by deployments, i.e.
interdependent workloads that use one or more cores. The set of

deployments currently on the cluster is denoted by X , and each

deployment x ∈ X is assigned a number of coresCx
. Any core that

is assigned to a deployment is called active, while the remainder are

inactive. All inactive cores are assumed to be ready to be assigned

and become active at any time. The exact placement of cores inside

the cluster is not taken into account at this level and in consequence

we do not model the grouping of cores into VMs.

A deployment can request to scale out, i.e., increase its number of

active cores. Each such request is for one or more additional cores

and must be accepted whenever enough inactive cores are available.

Following current practice, scale out requests must be granted

entirely or not at all. Deployments may also stop using some of

their cores over time, turning these cores inactive. A deployment

dies when it reaches zero active cores. It can also die spontaneously,

instantly turning all its cores inactive. Intuitively this models a

user’s decision to shut down the deployment. We assume that the

processes for the time between scale outs and the time until a core

becomes inactive are memoryless. This is common when modelling

arrival and departure processes, and has been used in previous

models of cloud computing [1, 8].

New deployment requests arrive over time and are accepted or

rejected according to an admission policy based on the current state

of the cluster and the arriving deployment. The policy has to ensure

that the cluster is not forced to reject a higher percentage of scale

out requests than is specified by an internal service level agreement
(SLA) τ . If a scale out request cannot be accepted because the cluster
is already at capacity, one failure for the purpose of meeting the SLA

is logged. An optimal policy therefore maximizes the utilization of

the cluster, i.e., the average number of active cores, while making

sure the SLA is observed in expectation (i.e., over time).

2.2 POMDP Formulation
If the parameters governing the scale out behavior of deployments

were known, the optimal policy could be formulated as the solution

to a Markov Decision Process. But as they are generally not known,
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the cluster can only reason about them based on observed behavior

and (optionally) some a priori information about individual de-

ployments. The problem of finding an optimal policy can therefore

be formalized as a constrained discrete time Partially Observable

Markov Decision Process (POMDP) (S,A,R,T,C,τ ,Ω,O). While

deployments can arrive at arbitrary times, it takes time to make the

acceptance decision. Thus, there is little loss in assuming (for the

purposes of our POMDP) that time is discrete. S denotes the space
of all possible states the cluster can be in. A state s ∈ S is assumed to

contain all information about the cluster’s active deployments X (s )
(including both their current size and scaling process parameters)

as well as the deployments that arrived during the current time step.

The action setA consists of accepting or rejecting the newly arrived

deployments. The reward function R(s ) =
∑
x ∈X (s ) C

x
is simply

the number of active cores in a state s . T(s ′ |s,a)∀s ′s ∈ S,∀a ∈ A
denotes the state transition probabilities and C(s,a) denotes the
expected number of failures that occur at the state transition from

a given state-action pair. τ is the SLA, as described above. Ω is the

set of possible observations and O an observation model.

The provider does not actually observe the full state space. In-

stead, an observation o ∈ Ω only reveals whether deployments

arrived to the cluster or died and the current size Cx
of any active

deployment x ∈ X , while in particular not revealing the parame-

ters of the deployments. Note that this means that our observation

model O is deterministic, but that many states share the same ob-

servation. As is standard, we further denote the clusters’ current

knowledge about which state s it is in via a belief state B, i.e. a
probability distribution over all possible states. Whenever the state

of the system changes in some time step n and the cluster obtains

a new observation o, the belief state is updated according to the

observation model, i.e.

bn+1 (s
′ |bn ,a,o) ∝ O(o |s

′)
∑
s
T(s ′ |s,a)bn (s ). (1)

We can now formulate the problem of finding an optimal policy.

Problem 2.1. An optimal policy p∗ starting in belief state b can
be found by solving

p∗ = arдmaxp
∑
n

∫
s
fn,p,b (s )

∑
x ∈X (s )

Cxds (2)

s .t .

∫
s
fn,p,b (s )C(s,ap )ds ≤ τ ∀n > 0 (3)

where fn,p,b is the probability density function of the distribution
over the states of the system for time step n given policy p and starting
belief b. An optimal policy therefore maximizes the expected reward,
i.e. the expected number of active cores over all future time steps. The
side constraint (3) guarantees that the optimal policy is only chosen
from those policies that observe the SLA, given the provider’s belief.

Before moving on to try to find policies that solve the POMDP,

we pause to examine some key features of our model. Note that if

the underlying state were fully observable, with c cores there could
be as many as c deployments each of which requires at least four

parameters to describe its size and processes. The parameter space

for each stochastic process is continuous, meaning a state s ∈ S
consists of more than c discrete and 3c continuous parameters. Thus,

even if we would fully discretize the parameter space, the number

of states of our underlying MDP would be exponential in c . This
makes solving it a challenge even without the added complexity of

the SLA constraint and the partial observability. This means that

approaches to solving our POMDP which would require solving

versions of the MDP as a subroutine are infeasible in our setting,

where clusters contain 10, 000 or more cores.

3 ADMISSION CONTROL POLICIES
In this section, we present the simple cluster admission policy

currently used in practice, as well as our new, more sophisticated

policies. Even with limited look-ahead horizons, optimal policies

cannot feasibly be calculated for the POMDP. There is no simple

closed form for the state transition probabilities and even if there

was, the branching factor of the POMDP is too large. This problem

persists even if we would only try to solve the underlying MDP. We

therefore present heuristic policies tailored to the cluster admission

problem. Our policies are based on a number of carefully chosen

simplifying assumptions:

Disregard future arrivals. Our policy does not reject deployments

simply because there is a chance that better behaved deployments

arrive in the future. The optimal policy, under this assumption,

accepts a new deployment whenever doing so does not violate the

side constraint. This allows our policy to decide acceptance based

only on the failure probability caused by the current population of

the cluster and assuming no more deployments arrive in the future.

In the cloud domain, this assumption is actually desirable, as even

customers with high demand variability must be served by some

cluster in the data center.

Relax capacity constraint. When disregarding future arrivals, the

cluster’s future state only depends on how the sizes of the current

active deployments change. Despite this, the probabilities are com-

plex because if one deployment helps fill the cluster then further

scale out requests by other deployments are denied, introducing

correlations between the size of deployments. Instead, the policy as-

sumes the cluster can run an infinite number of cores which allows

the evolution of each deployment to be independent. Intuitively

this is reasonable because the cluster being full should be rare if

the constraint on the policy is being met. Note that we only make

this assumption for the prediction of state transitions; the policy

still logs scale outs that would fail in reality as failures.

With these first two assumptions, we can now describe the future

evolution of the cluster using independent random variables Lxn to

denote the size of every deployment x ∈ X at time step n.

Assume at most one failure occurs per time step. Since the prob-
ability that more than one scale out request has to be denied in a

single time step approaches zero with increased granularity of the

time discretization, it is reasonable for the policy to assume that at

most one failure to scale out is counted per time step. Adding this

assumption now allows us to simplify the side constraint:

Proposition 1. Under the three assumptions (disregard future
arrivals, relax capacity constraint, and assume at most one failure
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occurs per time step), the side constraint (3) for any time stepn becomes∫
s
fn,p,b (s )C(s,ap )ds = Pr (

∑
x

Lxn+1 > c ) ≤ τ . (4)

An optimal policy that operates under these three assumptions
accepts an arriving deployment whenever doing so does not violate
inequality (4).

The statement follows directly from the three assumptions.

Approximate failure probability using (approximate) moments.
While the last three assumptions greatly simplified the problem,

the processes at hand leave us without an analytical form of in-

equality (4). Instead, we utilize the (approximate) moments of Ln to

construct simple policies. In the following, we present three such

policies that make use of successively higher moments.

3.1 Zeroth Moment Policy (Baseline)
The baseline admission control policy that is widely used in practice

is a myopic policy that simply compares the current number of

active cores to a threshold. This policy does not require any infor-

mation about the set of deployments besides the total number of

active cores. We also call it a Zeroth Moment Policy because it takes

no information about the future into account. The limited amount

of information it uses means that it has to be very conservative

in how many deployments to accept, since it does not know how

often or fast they will scale out.

Definition 1 (ZerothMoment policy). Under a zerothmoment
policy with threshold t , a newly arriving deployment is accepted if,
after accepting the deployment, there would be less than t cores active.

3.2 First Moment Policy
Frst moment policies approximate (4) by utilizing the first moments,

i.e. the means, of the deployment processes. In the spirit of Markov’s

inequality, we propose to accept arriving deployments whenever

the expected utilization lies below a chosen threshold.

Definition 2 (First Moment Policy). Under a first moment
policy with threshold t , a newly arriving deployment is accepted if,
after accepting the deployment, the expected number of active cores
would be less than t in all future time steps, i.e.∑

x ∈X
E[Lxn] ≤ t ∀n (5)

Note that, unless the exact parameters of a deployment are

known, exactly calculating the expectation is not feasible. Thus, we

use an approximation that is shown in the paper’s full version [7].

3.3 Second Moment Policy
First moment policies still fail to take into account much of the

structure of deployments. In a sense they always have to take the

worst possible population mix into account and run the risk of

accepting deployments with low expected size but high variance

when close to the threshold. One way around this is to also take the

second moment, i.e. the variance of Ln , into account. To do so, we

propose to use Cantelli’s inequality, a single-tailed generalization

of Chebyshev’s inequality, to approximate inequality (4).

Table 1: Simulation results

Policy Threshold Utilization
Standard
Error

Zeroth Moment t = 10, 644 59.2% 0.54%

First Moment t = 14, 262 67.3% 0.58%

Second Moment ρ = 0.1063 67.5% 0.7%

Cantelli’s Inequality states that, for a real-valued random variable

L and ϵ ≥, 0 it holds that

Pr (L − E[L] ≥ ϵ ) ≤
Var [L]

Var [L] + ϵ2
. (6)

If we now set ϵ = (c −
∑
x ∈X E[Lxn]), we can bound the probability

of running over capacity. While the bound given by the inequality

is not tight enough to simply set it to τ , it can be used to bound the

first two moments in a systematic way.

Definition 3 (Second Moment Policy). Under a second mo-
ment policy with threshold ρ, a newly arriving deployment is accepted
if, after accepting the deployment, the estimated probability of run-
ning over capacity would be less than ρ in all further time steps,
i.e. ∑

x ∈X Var [Lxn]∑
x ∈X Var [Lxn] + (c −

∑
x ∈X E[Lxn])

2
≤ ρ ∀n (7)

The formulas we use to approximate the variance are given in

the full version of the paper [7].

Note that the computational overhead of the second moment

policy with properly chosen prior distributions is inO (Lcn), where
L is the arrival rate of new deployments per hour, c is the size

of the cluster and n is the number of evaluated time steps of the

look-ahead. More details can be found in the full paper [7].

4 EMPIRICAL EVALUATION
In this section, we evaluate the performance of our admission poli-

cies using a model fitted to the real-world data trace of Cortez et

al. [5].
3
A discussion of our fitting procedure and the fitted model

can be found in the full version of the paper [7].

We simulate clusters with capacity c = 20, 000 for a 3-year period

with all three policies. We determine the optimal threshold for

each policy via binary search, subject to meeting an SLA of 0.01%.

An average of 1 new deployment arrives per hour according to

a Poisson process. The parameters of each arriving deployment

are drawn from the fitted distributions (see the full version of the

paper [7]). To simulate three years with a reasonable number of

core-hours, the look ahead for the first and second moment policies

is divided into 5 parts: a 24-hour look ahead, a week long look

ahead, a month long look ahead and both a 1 and 3 year long look

ahead. Each look ahead discretizes its time into 600 time steps and

evaluates the policy at each time step until the arriving deployment

becomes marginal (i.e. it’s evaluated moments are less than 1e−5).

3
Since the data set is limited, we cannot directly evaluate the policy on the historical

deployments. We defer such evaluations to future work once more data is available.
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The results are summarized in Table 1. The zeroth moment pol-

icy obtains its best result with a threshold of t = 10, 644. It results

in an average utilization of 59.2% over the cluster’s lifetime. The

first moment policy with t = 14, 262 increases the utilization by

8.1 absolute percentage points to 67.3%. This constitutes a relative

increase of 13.6% over the zeroth moment policy and means that

the same number of deployments can be served by roughly 12% less

hardware, an invaluable competitive edge. Similarly, the second

moment policy with threshold ρ = 0.1063 achieves a utilization of

67.5%, an relative improvement of 14%. With these thresholds, the

overwhelming number of simulated clusters has a rejection rate of

0, i.e., during the lifetime of a cluster, no scale out is rejected. Con-

versely, in a few runs, too many very large, long lived deployments

are accepted in the beginning of a cluster’s lifetime, leading to mass

rejections months or even years later. As this happens early in a

cluster’s lifetime when not much is known about deployments, the

difference between first and second moment policies is relatively

small.

5 EXTENSION 1: LEARNED PRIOR
So far, our observationmodel assumed that the cluster does not have

any information about arriving deployments, except for their initial

number of cores. The acceptance decision must therefore primarily

depend on the state of the deployments that are already in the

cluster. Intuitively, policies could better control whether accepting

a deployment risks violating the SLA if they had more information

about its future behavior. One way to obtain such information

would be to use machine learning (ML) based on features of the

arriving deployment and the submitting user’s history [5]. While

evaluating particular ML algorithms is beyond the scope of this

paper, we evaluate the effect different levels of available information

have. To parameterize the level of knowledge, we assume that the

policy gets passed some number of samples from each true scaling

process distribution of each arriving deployment.
4

We simulated the first and second moment policies with 4 dif-

ferent levels of information (0, 1, 5, and 50 observations), with the

same set-up as in Section 4. The results are shown in Figure 1. We

see that having prior knowledge equivalent to even a single sample

would improve utilization significantly, resulting in a utilization

of 77.78% and 79.8% for the first and second moment policies, re-

spectively. Here it becomes visible how the more complex model

of the second moment policy is able to better utilize the available

information. While the first moment policy struggles to obtain fur-

ther improvements with better priors, the second moment policy

can achieve a utilization of up to 83.77%. While it is infeasible to

calculate the utilization an optimal solution to the POMDP would

achieve, an upper bound of 92.1% is given by analyzing policies that

do not have to satisfy any SLA. The second moment policy with

good prior information is only 9% below this (unreachable) upper

bound, but 24.1% above the same policy without prior information

and 41.5% above the baseline policy. This shows both the power of

our policies and the great importance of taking all available prior

information about arriving deployments into account.

4
As we have used conjugate prior distributions in our model, this approach matches

the standard interpretation of parameters of the posterior distribution in terms of

pseudo observations.

Figure 1: Performance of different policies depending on
prior information (error bars indicate standard errors)

6 EXTENSION 2: ELICITED PRIOR
In this section, we use techniques from mechanism design to im-

prove the quality of prior information. While using ML to predict

the parameters of deployments is powerful, users do not typically

submit deployments with arbitrary parameters. Instead, they may

have a small number of different types of deployments. While ML

may be able to learn this, it is better to directly elicit some informa-

tion from the users. However, asking for estimates of parameters

for a given deployment is problematic, as it either shifts risk to the

consumer or enables manipulation. This leads to the idea of asking

users to categorize their deployments into different types of similar

deployments. Learning priors for each individual type then results

in more precise priors and higher efficiency.

Typically, users are charged a fixed payment per hour for each

core their deployment uses. To this, we add a small additional charge

based on the variance of the estimate for the deployment’s scaling

process and allow users to label the type of their deployments,

resulting in an hourly variance-based payment rule of the form:

π (x ) = κ1C
x + κ2Var (x ), (8)

where κ1 and κ2 are price constants and Var (x ) is an estimate

of the variance of the deployment. A payment rule of this form

incentivizes users to assign similar labels to similar deployments to

minimize the estimated variance.

To see this, consider a user who has two types of deployment, x
andy, with true variancesVar (x ) andVar (y). He could now simply

submit the deployments under a single label. For the provider, this

means that each submitted deployment is of either type with a

certain probability, which increases the variance of his prediction.

But if the user would label his deployments instead, the provider

would know for each arriving deployment which type it is, reducing

variance and therefore the need to reserve capacity. The following

proposition, which is immediate from the law of total variance,

shows that, at least in the long run, labeling his deployments also

reduces a user’s payments.

Proposition 2. Let z be the mixture that results from submitting
one of two types of deployments x , y chosen by a Bernoulli random
variable α ∼ Bernoulli (pα ), i.e., such that z is of type x with proba-
bility pα and of type y with probability 1 − pα . Then it holds that

pαVar (x ) + (1 − pα )Var (y) ≤ Var (z) (9)
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The proof follows from the law of total variance and can be found

in the full version of the paper [7]. Proposition 2 shows that the user

would be better off, on average, by splitting the mixture and submit-

ting the deployments under separate labels. Note that this abstracts

away issues of learning and non-stationary strategic behavior; but

for reasonable learning procedures we expect a consistent labeling

to lead to lower variance than a mixture while learning. Further,

this approach not only gives the user correct incentives to reveal the

desired information, but actually incentivizes him to improve the

performance of the system. In particular, another way he can lower

his payment under this scheme (outside the scope of our model)

is to design his deployments in such a way that they have lower

variance in their resource use. Since more predictable deployments

would allow the policy to maintain a smaller buffer, this provides

an additional benefit to the system’s efficiency.

How much any given user could ultimately save by labeling

his deployments mostly depends on how different his deployment

types are and on how high the provider sets the charge for variance.

A user whose deployments are quite uniform will not save much,

while a user with some deployments which never scale and some

that scale a lot can potentially save a lot. Note that how much the

provider should charge is not immediately clear. While he would

want to set a high price to put a strong incentive on users, he also

has to keep the competition from other providers in mind. At what

point the loss of market share outweighs the gain in efficiency is

an intriguing problem we leave for future work.

7 CONCLUSION
We have studied the problem of cluster admission control for cloud

computing. The optimal policy would be given as the solution to a

very large constrained POMDP which is infeasible to solve. In prac-

tice, simple threshold policies are therefore used for this problem,

while we propose carefully designed heuristic policies. Our simu-

lations, with parameters fit to traces from Microsoft Azure, show

the potential gains based on our policies. Our results demonstrate

that utilization can be increased by up to 14% just from learning

about deployments while they are active in the cluster. This can

be increased to a 41.5% gain if better prior information about ar-

riving deployments is available, for example through learning or

elicitation techniques. At cloud scale, these savings translate to

many hundreds of millions of dollars over the course of a hardware

lifetime, and any dollar saved directly translates to a gross profit

increase for the cluster provider. Our overall approach is funda-

mentally about managing the tail risks of a stochastic process. In

our case, these are the rare events where the cluster runs out of

capacity. Thus, our approach also applies in other domains where

the management of tail risks is important, for example in finance.
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