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Abstract

We consider the problem of clearing a system of interconnected banks that have
been exposed to a shock on their assets. Eisenberg and Noe (2001) showed that when
banks can only enter into simple debt contracts with each other, then a clearing vector
of payments can be computed in polynomial time. In this paper, we show that the
situation changes radically when banks can also enter into credit default swaps (CDSs),
i.e., financial derivative contracts that depend on the default of another bank. We
prove that computing an approximate solution to the clearing problem with sufficiently
small constant error is PPAD-complete. To do this, we demonstrate how financial
networks with debt and CDSs can encode arithmetic operations such as addition and
multiplication. Further analysis of our construction reveals that already determining
which banks are in default is a PPAD-complete problem. This makes apparent the
origin of the additional complexity introduced by CDSs: that banks may profit from
the ill-being of other banks.

1 Introduction

We consider systems of banks (or other financial institutions) that are connected by financial
contracts. Due to a shock, some of the banks may not be able to meet their obligations
towards other banks, thus forcing them into bankruptcy (or default). We study the clearing
problem in this setting, i.e., the problem of computing a collection of payments between
each pair of banks that are in accordance with standard bankruptcy law. Since banks’
contractual relationships banks can be complex and are often cyclic, designing good clearing
mechanisms is a nontrivial task.1

In their seminal paper, Eisenberg and Noe (2001) devised an efficient clearing mechanism
for financial systems. Their mechanism relies on the assumption that banks can only enter
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into simple debt contracts, i.e., loans from one bank to another. We argue, however, that
the growing importance of financial derivative contracts makes it necessary to reconsider
the question if today’s financial networks can still always be efficiently cleared. Specifically,
credit default swaps (CDSs), which are contracts that are only triggered when a reference
entity goes into default, have received only little attention in a network context so far.
Market participants use CDSs to insure themselves against a default of the reference entity
or to place a speculative bet on this event. Because the reference entity can itself be a
financial institution, CDSs create new dependencies that do not exist in pure debt networks.

In prior work (Schuldenzucker et al., 2016), we have shown that if no money is lost
in the bankruptcy process (i.e., banks do not incur default costs), then clearing payments
always exist. However, our proof is via a non-constructive fixed point argument so that the
question remained open if one could devise an efficient algorithm to actually find a clearing
payment vector in this case.

In the present paper, we answer this question in the negative: we show that the problem
FindClearing of finding an approximately clearing vector of payments in a financial net-
work with debt and CDSs and without default costs is PPAD-complete even for a sufficiently
small constant error bound. This implies that the problem does not have a polynomial-time
approximation scheme unless P=PPAD and thus needs to be considered computationally
infeasible in the worst case. We extend our result by showing that already the problem of
determining the set of banks that default in any (approximate) solution is PPAD-complete.

More in detail, we proceed as follows: we first describe a simplified variant of our
model from (Schuldenzucker et al., 2016) that only applies to the case without default costs
(Section 3). We next argue that since solutions to the clearing problem can be irrational,
FindClearing needs to be considered as an approximation problem. We define the notion
of an ε-approximate clearing vector and we show that it makes the FindClearing problem
well-posed and a member of PPAD (Section 4). Having done this, we describe our main
contribution, namely a reduction from the problem of finding an approximate solution of
a generalized circuit to FindClearing, establishing that FindClearing is PPAD-hard.
We do this by composing financial system gadgets, i.e., fragments of financial networks that
encode specific operations such as addition, subtraction, scaling, comparison, and Boolean
operations like NOT and OR (Section 5). Our financial system gadgets have a particularly
simple structure; so simple in fact that as soon as one knows which banks are in default
and which are not, one can efficiently compute a clearing vector. From this we conclude
that it is already PPAD-complete to determine which banks are in default, and that this
even remains true in the special case where liabilities never form cycles, CDS writers never
default, and banks are not at all exposed to their contract counterparties (Section 6).

Our results contribute to the literature on complexity in financial networks (Battiston
et al., 2016). By measuring complexity in terms of computational complexity, we are able
to accurately describe the effect of introducing a new class of financial products into the
system. Our hardness result has practical relevance for stress tests in which regulators such
as the European Central Bank evaluate the stability of the financial system under an array of
adverse economic scenarios. We argue that, because of the complex interdependencies in real
financial networks, future stress tests should take into account network effects, which would
essentially require regulators to compute clearing payments. However, as we show, this
problem is computationally infeasible. While we do not specify below which approximation
quality ε this happens and it may indeed be the case that the clearing problem can be solved
efficiently for values of ε demanded in practice, the fact that there is no polynomial-time
approximation scheme (unless P=PPAD) tells us that such algorithms, if they exist, need
to be discovered for individual values of ε: there is no general recipe to construct an efficient
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stress testing algorithm given the desired ε.

2 Related Work

Prior work on financial networks has primarily focused on financial contagion, i.e., how
small shocks may amplify to system-wide losses and which network topologies are partic-
ularly susceptible to such effects. Researchers have investigated trade-offs between (stabi-
lizing) diversification and (destabilizing) contagion effects based on network completeness
(Allen and Gale, 2000), portfolio diversification and integration (Elliott et al., 2014), or the
magnitude of shocks (Acemoglu et al., 2015). Several measures for an individual bank’s
contribution to systemic risk have been proposed: a distance measure by Acemoglu et al.
(2015) and two network algorithms: DebtRank by Battiston et al. (2012) and LASER by
Hu et al. (2012).

The clearing problem was first studied by Eisenberg and Noe (2001), who showed that
in debt networks, clearing payments always exist and can be computed in polynomial time.
Rogers and Veraart (2013) extended their result to debt networks with default costs. Since
all aforementioned pieces of work use a weighted graph as the underlying model of the
financial network, they cannot accurately represent the ternary relationship introduced by
a credit default swap between the holder, the writer, and the reference entity. We filled this
gap in prior work (Schuldenzucker et al., 2016) by devising a new model that could represent
networks of debt and CDSs. We then showed that the clearing problem in these networks
is significantly more complex than in the debt-only case: if default costs are present, then
clearing payments may not exist and it is NP-hard to decide if they do. In this work, we
study the case without default costs.

A field that has only developed recently is the application of computational complexity
theory to financial markets. Arora et al. (2010) and Zuckerman (2011) investigated the cost
of asymmetric information in financial derivatives markets with computationally bounded
agents. Braverman and Pasricha (2014) provided computational hardness results on fair
pricing of compound options. Hemenway and Khanna (2015) showed that in Elliott et al.’s
model, it is computationally infeasible to determine the distribution of a given total negative
shock to the banks that has the worst impact in terms of value. In contrast, we prove that
in financial networks with CDSs, it is already computationally infeasible to determine the
impact of a known distribution of shocks to banks.

The PPAD complexity class was introduced by Papadimitriou (1994) to capture the
hardness of a class of total search problems. Daskalakis et al. (2005) developed the proof
technique of reduction from generalized circuits to show that finding a Nash equilibrium in a
graphical game with exponential accuracy is PPAD-complete. Their result was subsequently
strengthened and extended by Chen et al. (2006), Daskalakis (2013), and Rubinstein (2015)
while at the same time, the theory of generalized circuits was refined. Our work builds
on these techniques, in particular on Rubinstein’s (2015) hardness result for generalized
circuits with constant accuracy. To the best of our knowledge, we are the first to implement
generalized circuits using financial networks and, together with our prior work on the case
with default costs, we are the first to present a computational complexity result for the
clearing problem.
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3 Formal Model

Our model is based on the model by Eisenberg and Noe (2001), which was restricted to
debt contracts. We define an extension to credit default swaps. We adjust the notation
where necessary. The model used in this paper is a simplified version of the one used in
(Schuldenzucker et al., 2016), where default costs were also modeled. In this paper, we only
consider financial systems without default costs.

Consider a two-period model:

• Period 0: Each bank receives an initial endowment called its external assets. Banks
enter into bilateral contracts with each other. No bank is in default.

• Period 1: Banks’ external assets change due to an exogenous shock. All banks make
payments according to their contractual commitments from period 0 and the new
external assets.

We define the elements of the financial system in period 1.

Banks and External Assets. We denote by N a finite set of n banks. For any bank
i ∈ N let ei ≥ 0 denote the external assets of i as of period 1. Let e = (ei)i∈N denote the
vector of all external assets.

Contracts. There are two types of contracts: debt contracts and credit default swap
contracts (CDSs). Every contract gives rise to a conditional obligation to pay a certain
amount, called a liability , from its writer to its holder . Banks that are unable to fulfill their
obligations are said to be in default . The recovery rate ri of a bank i is the share of its
liabilities it is able to pay. Thus, ri = 1 if i is not in default and ri < 1 if i is in default.
Let r = (ri)i∈N denote the vector of all recovery rates.

A debt contract obliges the writer i to unconditionally pay a certain amount to the
holder j in period 1. This amount is called the notional of the contract and is denoted by
c∅i,j . A credit default swap obliges the writer i to make a conditional payment to the holder
j in period 1. The amount of this payment depends on the default of a third bank k, called
the reference entity . Specifically, the payment amount of the CDS contract from i to j with
reference entity k and notional cki,j is cki,j · (1− rk).

Note that when banks enter into contracts, there would typically be an initial payment.
For example, debt contracts arise because the holder lends an amount of money to the
writer, and holders of CDSs pay a premium to obtain them. In our model, any initial
payments have been made in period 0 and are implicitly reflected by the external assets.

The contractual relationships between all banks are represented by a 3-dimensional
matrix c = (cki,j)i∈N, j∈N, k∈N∪{∅}. The entry c∅i,j is the total notional of the debt contracts

from i to j and the entry cki,j for k ∈ N is the total notional of CDS contracts from i to j
with reference entity k. Zero entries indicate the absence of the respective contract. The
set of contracts can alternatively be represented as an edge-weighted directed hypergraph.

We require that no bank enters a contract with itself (i.e., cki,i = 0 for all k ∈ N ∪ {∅}
and i ∈ N). We further require that any bank that is a reference entity in a CDS must be
a writer of some debt contract (i.e., if

∑
k,l∈N c

i
k,l > 0, then

∑
j∈N c

∅
i,j > 0 for all i ∈ N).

Both requirements are needed to rule out pathological cases.They are always assumed to
hold in the following.

For any bank i, the creditors of i are the banks that are holders of contracts for which
i is the writer, i.e., the banks to which i owes money. Conversely, the debtors of i are the
writers of contracts of which i is the holder, i.e., the banks by which i is owed money. Note
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that the two sets can overlap: for example, a bank could hold a CDS on one reference entity
while writing a CDS on another reference entity, both with the same counterparty.

Financial System Without Default Costs. A financial system without default costs
(or, for the purpose of this paper just a financial system) is a tuple (N, e, c) where N is a
set of banks, e is a vector of external assets, and c is a 3-dimensional matrix of contracts.
The length of a financial system is the total number of bits needed to describe the tuple,
including all numeric values.

Liabilities, Payments, and Assets. For two banks i, j and a vector of recovery rates r,
the liabilities of i to j at r are the amount of money that i has to pay to j if recovery rates
in the financial system are given by r, denoted by li,j(r). They arise from the aggregate of
all debt- and CDS contracts from i to j.

li,j(r) := c∅i,j +
∑
k∈N

(1− rk) · cki,j

The total liabilities of i at r are the aggregate of all liabilities that i has toward other banks
given the recovery rates r, denoted by li(r).

li(r) :=
∑
j∈N

li,j(r)

The actual payment pi,j(r) from i to j at r can be lower than li,j(r) if i is in default. By
the principle of proportionality , a bank that is in default makes payments for its contracts
in proportion to the respective liabilities.

pi,j(r) := ri · li,j(r)

The total assets ai(r) of a bank i at r consist of its external assets ei and the incoming
payments to i.

ai(r) := ei +
∑
j∈N

pj,i(r)

Clearing Recovery Rate Vector. Following Eisenberg and Noe (2001), we call a re-
covery rate vector r clearing if the payments pi,j(r) satisfy the following three principles:

1. Absolute Priority: Banks with sufficient assets pay their liabilities in full.

2. Limited Liability: Banks with insufficient assets to pay their liabilities are in default
and pay all of their assets to creditors.

3. Proportionality: In case of default, payments to creditors are made in proportion to
the respective liability.

The principle of proportionality is automatically fulfilled by the definition of the pay-
ments pi,j(r). The other two principles lead to the following formal definition.

Definition 3.1 (Clearing Recovery Rate Vector). A recovery rate vector r is called clearing
for a financial system without default costs X = (N, e, c) if for all banks i ∈ N we have∑

j∈N
pi,j(r) = min (ai(r), li(r)) . (1)

We also call a clearing recovery rate vector a solution.
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Remark 3.2 (Clearing Payments and Recovery Rates). It is an equivalent point of view
whether one considers clearing payments or clearing recovery rates. The previous definition
is equivalent to requiring that the recovery rates of banks with positive liabilities are 1
in case they are not in default (ai(r) ≥ li(r)) and ai(r)/li(r) in case they are in default
(ai(r) < li(r)). The recovery rates of banks with zero liabilities are left unconstrained
between 0 and 1. While this might seem unintuitive at first, it corresponds exactly to the
definition of the recovery rate: ri is the share of its total liabilities that bank i can pay. If
there are no liabilities, then this value is not well-defined. Forcing the recovery rate to 1

in these cases would introduce an artificial discontinuity because ai(r)
li(r)

may converge to a

value strictly below 1 while li(r)→ 0.

Figure 1 Example financial system.

A

B C
1

2
1

0

2 1

Example and Visual Language. Figure 1
shows a visual representation of an example fi-
nancial system. There are three banks N =
{A,B,C}, drawn as circles, with external assets
of eA = 0, eB = 2, and eC = 1, drawn as rect-
angles on the banks. Debt contracts are drawn
as blue arrows from the writer to the holder and
they are annotated with the notionals c∅B,A = 2

and c∅B,C = 1. CDS contracts are drawn as orange
arrows where a dashed line connects to the refer-
ence entity and are also annotated with notionals:
cBA,C = 1. A clearing recovery rate vector for this example is given by rA = 1, rB = 2

3 , and
rC = 1. The liabilities arising from this recovery rate vector are lB,A(r) = 2, lB,C(r) = 1,
and lA,C(r) = 1

3 . The clearing payments are pB,A(r) = 4
3 , pB,C = 2

3 , and pA,C(r) = 1
3 .

This is the only solution for this system.
We stress that we are not concerned with the question whether or not it is “rational” for

the banks to form a certain financial system: contracts might have been entered for reasons
exogenous to the system, or simply for cash transfers at time 0.

Theorem 3.3 (Schuldenzucker et al. (2016)). Any financial system without default costs
has a clearing recovery rate vector.

Proof Outline. The proof rests on the fact that the right-hand side of equation (1) in Defini-
tion 3.1 is a continuous function of r. Let [0, 1]N be the set of the |N |-tuples with elements
in [0, 1], labeled by the elements of N . Consider the function ρ defined by

ρ : [0, 1]N → 2[0,1]N

ρ(r) :=
N×
i=1

ρi(r)

where

ρi : [0, 1]N → 2[0,1]

ρi(r) :=

{
{min(1, ai(r)li(r)

)} if li(r) > 0

[0, 1] if li(r) = 0.

By Remark 3.2 a recovery rate vector r is clearing iff it is a fixed point of the set-valued
function ρ, i.e., iff r ∈ ρ(r). To show that such a fixed point exists, one applies Kaku-
tani’s fixed point theorem for set-valued functions with a closed graph (a generalization of
Brouwer’s fixed point theorem for continuous functions).
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4 Defining the FindClearing Search Problem

We have just seen a non-constructive proof that a solution for a given financial system
always exists. In this section, we define the corresponding total search problem. This is not
a trivial task: there are financial systems where all solutions are irrational numbers (a simple
example is provided in Appendix A) and these solutions have infinitely many non-periodic
digits, so a computer could not even output a solution in finite time. Thus, the problem
“given a financial system, find a clearing recovery rate vector” is not well-posed and the best
we can hope for is an algorithm that computes a recovery rate vector that is in some sense
approximately clearing. More in detail, we need to relax our problem such that there always
exist “approximate” solutions that are polynomial in length: otherwise, any algorithm would
take super-polynomial time in the worst case even to output an approximate solution.

There are many ways to relax the definition of clearing recovery rate vectors to receive
a concept of an approximate solution. The approach we will use in this paper is by relaxing
the function ρ from the proof of Theorem 3.3. For x ∈ R let [x] := min(1, max(0, x)). For
ε ≥ 0 write y = x ± ε to mean that |x − y| ≤ ε if x and y are scalars and ‖x − y‖ ≤ ε if
x and y are vectors, where ‖ · ‖ is the supremum norm. We also use the notation “±ε” in
compound expressions such as [x± ε] to indicate a range of possible values. This notation
formally corresponds to interval arithmetic. For ε ≥ 0 and i ∈ N let

ρεi (r) : [0, 1]N → 2[0,1]

ρεi (r) :=

{
[ai(r)li(r)

± ε] if li(r) > 0

[0, 1] if li(r) = 0

and let ρε : [0, 1]N → [0, 1]N be defined accordingly.

Definition 4.1 (Approximately Clearing Recovery Rate Vector). Fix a financial system
without default costs and let ε ≥ 0. A recovery rate vector r is called ε-approximately
clearing or an ε-solution if it is a fixed point of the set-valued function ρε, i.e., if r ∈ ρε(r).
For clarity, we refer to (not approximate) solutions as exact solutions.

The following proposition gives a useful equivalent definition of ε-solutions.

Proposition 4.2 (Alternative Definition of Approximate Solutions). r is an ε-solution iff
for all i we have one of the following cases, where b) and c) are non-exclusive:

a) li(r) = 0

b) li(r) > 0, ai(r)
li(r)

≥ 1− ε, and ri = 1

c) li(r) > 0, ai(r)
li(r)

≤ 1 + ε, and ri = ai(r)
li(r)

± ε

In particular, if ai(r)
li(r)

≥ 1 + ε, then we must have ri = 1 and if ai(r)
li(r)

< 1 − ε, then we

must have ri < 1. Further, if r is an ε-solution and li(r) > 0, then ri = [ai(r)li(r)
]± ε, but the

converse does not necessarily hold.

The proof of the proposition is by simple algebra and is omitted. Our definition of an
approximate solution has many desirable properties from an economic and technical point
of view. We provide a discussion in Appendix B.

It is easy to see that for any ε > 0, there always exists an ε-solution of finite length.
To guarantee that there is also an ε-solution of polynomial length, we make an additional
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assumption that we call nondegeneracy.2 We can then state our search problem.

Definition 4.3 (Nondegenerate Financial System). A financial system without default
costs X = (N, e, c) is called nondegenerate if each bank that writes a CDS

a) also writes a debt contract or

b) has strictly positive external assets.

Definition 4.4 (ε-FindClearing Problem). For any parameter ε > 0, ε-FindClearing
is the following total search problem: given a nondegenerate financial system without default
costs, find an ε-solution.

The following lemma establishes that under the assumption of nondegeneracy, suffi-
ciently “short” approximate solutions always exist in the vicinity of exact solutions, thus
making ε-FindClearing a well-posed search problem. The converse is not in general true:
there can be additional approximate solutions that are not close to any exact solution.
While this is unfortunate, it appears to be unavoidable for an approximate solution con-
cept; for example, the well established concept of approximate Nash equilibria also has this
property.

Lemma 4.5. If X = (N, e, c) is a nondegenerate financial system without default costs and
ε > 0, then there exists an ε-solution of length polynomial in the length of X and the length
of ε.

Proof Outline (full proof in Appendix C). We define a function F such that any ε-approximate
fixed point of F gives rise to an ε-solution of X and we prove that F has a polynomial Lip-
schitz constant. By Brouwer’s fixed point theorem, F has a fixed point and by rounding
this fixed point to a grid of polynomial step size, we receive an ε-solution.

Theorem 4.6. For any ε > 0, the problem ε-FindClearing is in PPAD.

Proof Outline (full proof in Appendix C). We use the function F from the proof of the pre-
vious lemma and the fact that the problem of finding an approximate fixed point of a
Lipschitz continuous function is in PPAD.

5 FindClearing is PPAD-hard

Our main contribution in this paper is the proof that FindClearing is PPAD-hard, and
thus PPAD-complete for a sufficiently small constant ε.

Theorem 5.1. There exists an ε > 0 such that the ε-FindClearing problem is PPAD-
hard.

The theorem immediately implies:

Corollary 5.2. There is no polynomial-time approximation scheme that computes an ε-
solution for a given financial system without default costs and given ε, unless P = PPAD.

Towards a proof of the theorem, we proceed in two steps: we first introduce a variant
of Rubinstein’s (2015) generalized circuit framework and we show that the problem of
finding an approximate solution of a generalized circuit in this framework is still well-
posed and PPAD-complete (Section 5.1). We then reduce this problem to FindClearing
(Section 5.2).

2 It is an open question whether or not ε-solutions of polynomial length are still guaranteed to exist
when this assumption is not made.
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5.1 Generalized Circuits

A generalized circuit consists of a collection of interconnected arithmetic or Boolean gates.
In contrast to regular arithmetic or Boolean circuits, generalized circuits may contain cycles,
making the problem of finding a solution (or stable state) of the circuit a non-trivial fixed
point problem. Rubinstein (2015) introduced a framework for generalized circuits that is
already well-suited for our purposes. To make our reduction to financial systems as simple
as possible, we use a reduced set of gates.

Definition 5.3 (Generalized Circuit and Approximate Solution). A generalized circuit is
a collection of nodes and gates, where each node is labeled input of any number of gates
(including zero) and output of at most one gate. Inputs to the same gate are distinguishable
from each other. Each gate has one of the following types:

• For each ζ ∈ [0, 1] the constant gate Cζ with no inputs and one output.

• Arithmetic gates: addition and subtraction gates, denoted C+ and C−, with two
inputs and one output; for each ζ > 0 the scale by ζ gate C×ζ with one input and one
output.

• For each ζ ∈ (0, 1) the compare to ζ gate C>ζ with one input and one output.

• Boolean gates: C¬ with one input and one output and C∨ with two inputs and one
output.

The length of a generalized circuit is given by the number of nodes, the size of the mapping
from nodes to inputs and outputs of gates, and the length of any ζ values involved.

If ε ≥ 0 and C is a generalized circuit, then an ε-approximate solution (or ε-solution) to
C is a mapping that assigns to each node v of C a value x[v] ∈ [0, 1] such that at any gate
of type g with inputs a1, ... , ak and output v the respective condition from Figure 2 holds.

Definition 5.4 (ε-GCircuit Problem). For any parameter ε > 0, ε-GCircuit is the
following total search problem: given a generalized circuit, find an ε-solution.

Note how the comparison gadget C>ζ is brittle: its value is arbitrary if x[a1] is close to
ζ. This property is crucial for our second step of describing generalized circuits via financial
systems because the function ai

li
that ultimately defines an approximate solution is always

continuous while a non-brittle comparison gadget, yielding low values for x[a1] < ζ and
high values for x[a1] ≥ ζ, would correspond to a discontinuous function. We further use
approximate Boolean values 0±ε and 1±ε instead of exact Boolean values 0 and 1 since the
latter are not attainable if there can be ε errors at each bank. Note how chains of Boolean
gadgets do not accumulate errors, but chains of arithmetic gadgets do.

It is well accepted in the literature that GCircuit is well-posed and in PPAD. We
provide the following simple lemma for our variant of GCircuit for completeness. The
proof can be found in Appendix D.

Lemma 5.5.

1. If C is a generalized circuit and ε > 0, then there exists an ε-solution for C of length
polynomial in the length of C and the length of ε.

2. For any ε > 0, the ε-GCircuit problem is in PPAD.

PPAD-hardness of the GCircuit problem for constant ε follows by reduction from
Rubinstein’s (2015) variant:
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Figure 2 Conditions to hold at the different gates in an ε-solution of a generalized circuit

g = Cζ ⇒ x[v] = ζ ± ε
g = C+ ⇒ x[v] = [x[a1] + x[a2]]± ε
g = C− ⇒ x[v] = [x[a1]− x[a2]]± ε
g = C×ζ ⇒ x[v] = [ζx[a1]]± (1 + ζ) ε

g = C>ζ ⇒ x[a1] ≤ ζ − ε ⇒ x[v] = 0± ε
x[a1] ≥ ζ + ε ⇒ x[v] = 1± ε

g = C¬ ⇒ x[a1] = 0± ε ⇒ x[v] = 1± ε
x[a1] = 1± ε ⇒ x[v] = 0± ε

g = C∨ ⇒ x[a1] = 0± ε and x[a2] = 0± ε ⇒ x[v] = 0± ε
x[a1] = 1± ε or x[a2] = 1± ε ⇒ x[v] = 1± ε

Theorem 5.6. There exists an ε > 0 such that the ε-GCircuit problem is PPAD-hard.

Proof. Rubinstein (2015) proved that the following variant of the ε-GCircuit problem is
PPAD-hard for some ε:

1. Scaling is only allowed3 by values ζ ≤ 1 and has error ±ε instead of ±(1 + ζ)ε.

2. There are two additional, redundant gates: C= is a gate that (approximately) copies
its input and C∧ implements an approximate AND operator.

3. The comparison gate compares two inputs rather than compare one input to a con-
stant.

For the first point, note that if ζ ≤ 1, then our C×ζ gate has error (1 + ζ)ε ≤ 2ε and thus
we can achieve Rubinstein’s error bound by considering an ε

2 -solution instead. The second
point does not make the problem any harder because we can express C= as C×1 and C∧
via the identity x ∧ y = ¬(¬x ∨ ¬y).

Towards the third point, we show how to emulate the behavior of a binary comparison
gate. Let a1 and a2 be the inputs and v the output of the would-be binary comparison
gate. The expected behavior is that x[v] = 0 ± ε if x[a1] ≤ x[a2] − ε and x[v] = 1 ± ε if
x[a1] ≥ x[a2] + ε.

We rewrite the expression x[a1] < x[a2] to use only comparison to a constant in a
way that is robust against ε errors and cut-off at 0 and 1: construct, by combining the
appropriate gates, a sub-circuit corresponding to the expression ( 1

2 + (a1 − a2))− (a2 − a1)
and call the output node of that circuit u. If ε′ > 0 and x[·] is an ε′-solution, then
x[u] = ũ± 4ε′ where

ũ =

[[
1

2
+ [x[a1]− x[a2]]

]
− [x[a2]− x[a1]]

]
=

[
1

2
+ x[a1]− x[a2]

]
.

Note that x[a1] < x[a2]⇔ ũ < 1
2 . Add a C> 1

2
gate with input u and output v.

3 This assumption can be found in the full version of the paper (Rubinstein, 2016).
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Now assume WLOG that ε ≤ 1
2 , let ε′ = ε

5 , and let x[·] be an ε′-solution. Then

x[a1] ≤ x[a2]− ε ⇒ ũ ≤ 1

2
− ε =

1

2
− 4ε′ − ε′

⇒ x[u] ≤ 1

2
− ε′

⇒ x[v] ≤ ε′ ≤ ε

Analogously x[a1] ≥ x[a2] + ε ⇒ x[v] ≥ 1− ε.
Altogether, we can construct from any circuit C in Rubinstein’s (2015) framework a

circuit C ′ in our reduced framework such that the ε
5 -solutions of C ′ are ε-solutions of C.

This concludes the proof.

Remark 5.7 (Irrelevance of ε Multiples). It is clear that one may replace any individual
occurrence of ε in Figure 2 by a multiple λε where λ > 0 is any constant while preserving
the statement of the theorem. This is important because it will allow us to construct our
financial system gadgets corresponding to gates without having to worry about the exact
multiples of ε.

5.2 Reduction from Generalized Circuits to Financial Systems

We now reduce the GCircuit problem to the FindClearing problem. To do so, we
construct financial system gadgets, i.e., fragments of financial systems where the recovery
rate of an output bank is given (approximately) by a function of certain input banks.

Definition 5.8 (Financial System Gadget). A financial system gadget G is a polynomial-
time computable function mapping a financial system without default costs X = (N, e, c)
to a new financial system X ′ = (N ′, e′, c′) in the following way:

• Given are X, a set of input banks a1, ... , ak ∈ N where k depends on the gadget and an
output bank v ∈ N such that v has no assets or liabilities in X, i.e., ei = cki,j = ckj,i = 0
for all j ∈ N and k ∈ N ∪ {∅}.

• X ′ consists of X together with new banks and contracts.

• For any ε-solution r′ of X ′, the restriction r := r′|N is an ε-solution for X.

• For any ε-solution r of X, there is an ε-solution r′ of X ′ such that ri = r′i for all
i ∈ N \ {v}.

We usually label input banks a and b instead of a1 and a2 for the sake of readability.

We will now describe our gadgets: addition gadgets, scaling and comparison gadgets,
and Boolean gadgets. Some of the gadgets, shown in Figure 3–6, are fundamental while the
others are defined as combinations of the fundamental ones. Our gadgets add assets and
liabilities to the output bank and CDS references to the input banks. This ensures that
gadgets only restrict the recovery rate of the output bank based on the recovery rates of
the input banks, but not vice versa, and gadgets applied to different output banks do not
conflict. In a final step, we iteratively apply our gadgets starting from a financial system
with no contracts to receive a financial system that corresponds to a given generalized
circuit. Keep in mind that by Remark 5.7, our gadgets only need to be accurate up to a
constant multiple of ε, not necessarily up to ε. All gadgets lead to nondegenerate financial
systems.
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Figure 3 Constant Gadget: extension of an existing financial system with output bank v
by new banks s, t and contracts such that rv = ζ.

s v t
ζ 12 0

Figure 4 Inverter Gadget: extension of an existing financial system with input bank a and
output bank v by new banks s, t and contracts that translate 1− ra.

s v t
1

a

12 0

5.2.1 Addition Gadgets

The simplest gadget establishes a fixed recovery rate at the output bank:

Lemma 5.9 (Constant Gadget). Let ζ ∈ [0, 1]. There is a financial system gadget with no
input banks and output bank v such that if r is an ε-solution, then rv = ζ ± ε.

Proof. Consider the gadget in Figure 3. We have as(r)
ls(r)

≥ 2 ≥ 1 + ε, so rs = 1. Thus, s pays

in full and av(r) = ζ and lv(r) = 1 ≥ av(r), so in an ε-solution rv = av(r)
lv(r) ± ε = ζ ± ε.

An important building block for the following constructions is a gadget that “inverts”
the recovery rate of a bank.

Lemma 5.10 (Inverter Gadget). There is a financial system gadget with input bank a and
output bank v such that if r is an ε-solution, then rv = 1− ra ± ε.

Proof. Consider the gadget in Figure 4. Since lv(r) = 1 we have in any ε-solution that
rv = av(r)± ε and av(r) = 1− ra.

We can now define the sum and difference gadgets:

Lemma 5.11 (Sum Gadget). There is a financial system gadget with input banks a and b
and output bank v such that if r is an ε-solution, then rv = [ra + rb]± 3ε.

Figure 5 Sum Gadget: extension of an existing financial system with input banks a and b
and output bank v by new banks s, t and contracts that translate ra + rb.

s v t
1

a’

1

b’

14 0
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Figure 6 Amplifier Gadget: extension of an existing financial system with input bank a
by new banks s, t, u, v and contracts that translate the function f from Lemma 5.13. Let
µ = 2(γ + δ).

s u t
γ

a

1

v
δ 1

µ 0 0

Proof. Apply inverter gadgets (Lemma 5.10) to both a and b and call the output banks a′

and b′, respectively. Now consider the gadget in Figure 5. We have

rv = [1− ra′ + 1− rb′ ]± ε
= [ra + rb ± 2ε]± ε
= [ra + rb]± 3ε.

Lemma 5.12 (Difference Gadget). There is a financial system gadget with input banks a
and b and output bank v such that if r is an ε-solution, then rv = [ra − rb]± 3ε.

Proof. Apply an inverter gadget (Lemma 5.10) to a and call the output bank a′. Apply
the gadget in Figure 5 to a′ and b′ := b and call the output bank u. From the proof of the
previous lemma we know that

ru = [1− ra + rb]± 2ε

where the error is by one ε lower because we used one inverter gadget less. Now apply an
inverter to u and call the output bank v. To show that rv is as desired, we distinguish two
cases:

• If ra ≤ rb, then 1 − ra + rb ≥ 1, so ru ≥ 1 − 2ε and thus rv = 1 − ru ± ε ≤ 3ε as
required.

• If ra ≥ rb, then 1− ra + rb ≤ 1, so ru = 1− ra + rb ± 2ε and thus rv = 1− ru ± ε =
rb − ra ± 3ε as required.

5.2.2 Scaling and Comparison

Towards the scaling and comparison gadgets, we introduce a versatile tool that can be used
to re-scale and shift recovery rates.

Lemma 5.13 (Amplifier Gadget). Let K and L be real numbers such that K < L, K < 1,
and L > 0. Note that K ≤ 0 and L ≥ 1 are allowed. Let

f : [0, 1]→ [0, 1]

f(ra) :=

[
1

L−K
ra −

K

L−K

]
.
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f connects the points (−∞, 0), (K, 0), (L, 1), and (∞, 1) via straight lines.
There is a financial system gadget with input bank a and output bank v such that if r

is an ε-solution, then rv = f(ra) ± (δ + 1)ε where δ = 1−K
L−K . The construction can be

performed in time polynomial in the lengths of L and K.

Proof. Consider the gadget in Figure 6 with

γ :=
1

1−K

δ :=
1−K
L−K

.

Let r be an ε-solution. We show that rv = f(ra)± (δ + 1)ε. We have

ru = [γ(1− ra)]± ε
rv = [δ(1− ru)]± ε.

By replacing the first relation into the second one, we receive

rv ∈ [δ (1− ([γ(1− ra)]± ε))]± ε
⊆ [δ (1− [γ(1− ra)])]± (δ + 1) ε

= [δ (1− (γ(1− ra)))]± (δ + 1) ε

= [δ − δγ + δγra]± (δ + 1) ε =

[
− K

L−K
+

1

L−K
ra

]
± (δ + 1) ε

where the third line is because [δ(1− z)] = [δ(1− [z])] for any z ∈ [0,∞) and the last line
is by simple algebra. Thus, rv is as desired.

We receive a scaling gadget by choosing K = 0:

Corollary 5.14 (Scale by Constant Gadget). Let ζ > 0. There is a financial system gadget
with input bank a and output bank v such that if r is an ε-solution, then rv = [ζra]±(1+ζ)ε.
The construction can be performed in time polynomial in the length of ζ.

Proof. Use an amplifier gadget (Lemma 5.13) with K = 0 and L = 1
ζ . Then f(ra) = [ζra]

and δ = ζ.

We receive a gadget that acts like the brittle comparison gate C>ζ by choosing K and
L closely together around a central point ζ. The gadget is less “brittle” the closer K and
L are together, but this also increases the value δ and thus the output error of the gadget.
To compensate for this, we first introduce a gadget that converts a wide range of values to
approximate Boolean values with threshold 3ε.

Corollary 5.15 (Reset Gadget). There is a financial system gadget with input bank a and
output bank v such that if r is an ε-solution, then if ra ≤ 1

4 , then rv = 0±3ε and if ra ≥ 3
4 ,

then rv = 1± 3ε.

Proof. Apply the amplifier gadget (Lemma 5.13) with K = 1
4 and L = 3

4 . We have δ+ 1 =
5
2 < 3.

Corollary 5.16 (Brittle Comparison to Constant Gadget). Let ζ ∈ [0, 1]. There is a
financial system gadget with input bank a and output bank v such that if ε ≤ 1/18 and r is
an ε-solution, then if ra ≤ ζ − 3ε, then rv = 0 ± 3ε and if ra ≥ ζ + 3ε, then rv = 1 ± 3ε.
The construction can be performed in time polynomial in the length of ζ.
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Proof. We apply two constructions involving the amplifier gadget (Lemma 5.13): first we
apply an amplifier to a as an input bank with K := ζ−3ε and L := ζ+ 3ε. Call the output
bank u. We have δ = 1−K

L−K = 1−ζ+3ε
6ε ≤ 1+3ε

6ε = 1
6ε + 1

2 . So this gadget has output error

(δ + 1)ε ≤ 1
6 + 1

2ε+ ε ≤ 1
4 . Thus, if ra ≤ K, then ru ≤ 1

4 and if ra ≥ L, then ru ≥ 3
4 . Now

apply a reset gadget (Corollary 5.15) to u as the input bank to receive the desired lower
output error of 3ε.

5.2.3 Boolean Gadgets

We can re-use the addition gadgets from above to build Boolean gadgets, translating OR
into “+” and NOT into “1−x” (inversion). We use the reset gadget to prevent errors from
propagating.

Lemma 5.17 (Boolean Gadgets). There are financial system gadgets with input banks a
and b and output bank v such that if ε ≤ 1/36 and r is an ε-solution, then

i) (OR) If ra = 0± 3ε and rb = 0± 3ε, then rv = 0± 3ε.
If ra = 1± 3ε or rb = 1± 3ε, then rv = 1± 3ε.

ii) (NOT) If ra = 0± 3ε, then rv = 1± 3ε.
If ra = 1± 3ε, then ra = 0± 3ε.

Proof. i) Apply a sum gadget (Lemma 5.11) to a and b and call the output bank u. Now
apply a reset gadget (Corollary 5.15) to u and call the output bank v. We know that
ru = [ra + rb]± 3ε. If ra ≥ 1− 3ε or rb ≥ 1− 3ε, then ru ≥ 1− 6ε ≥ 3

4 , so rv ≥ 1− 3ε. If
ra, rb ≤ 3ε, then ru ≤ 9ε ≤ 1

4 , so rv ≤ 3ε.
ii) Apply similarly an inverter gadget (Lemma 5.10) and then a reset gadget. One easily

checks that the construction behaves as desired.

5.2.4 Completing the PPAD-hardness Proof

We combine our gadgets to model generalized circuits, thus reducing GCircuit to Find-
Clearing and proving PPAD-hardness of FindClearing:

Proof of Theorem 5.1. Let ε > 0 be arbitrary. We reduce ε-GCircuit to ε′-FindClearing
where ε′ := ε

3 . Let be given a generalized circuit C with n nodes. Construct a financial
system via the following algorithm.

• Start with a system X0 consisting of n banks that have no assets or liabilities. Identify
these n banks with the nodes of C.

• Consider the gates of C in any order. For each k = 1, ... , n do the following:

– Consider the k-th gate of C. Let g be the type, a1, ... , ak the inputs, and v the
output of this gate.

– Apply the gadget from above corresponding to g to Xk−1 with input banks
a1, ... , ak and output bank v. Call the resulting financial system Xk.

• Let X := Xn.

For k = 0, ... , n let Ck be C restricted to the first k gates. We show by induction on k that
the ε′-solutions of Xk correspond to ε-solutions of Ck. For k = 0, the statement is clear.
For k > 0, and assuming the statement for k − 1, it follows from the fact that the bank
corresponding to the output of the k-th gate has no assets or liabilities in Xk−1 and then
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from the definition of a financial system gadget and our above lemmas. By definition of the
gadgets, each Xk, and thus X, is nondegenerate.

Remark 5.18. The intermediate systems Xk in the above construction may violate our
assumption that any bank that is a reference entity in a CDS must be a writer of some
debt contract (cf. Section 3). This happens when gadgets refer to a reference entity that is
an output bank of another gadget that has not yet been executed. We can circumvent this
problem by temporarily replacing such banks by a financial sub-system that fulfills all our
assumptions and in which one of the banks can attain any recovery rate in some solution.4

Alternatively, one checks that not having the assumption does not lead to any problems in
the proof.

6 Origin of the Computational Complexity

Given the results from the previous section, one may wonder why exactly the computational
complexity arises in financial networks with CDSs and why it did not arise in debt-only
systems. Understanding this is important to devise policies that aim to reduce complexity
in the financial system in the future. In general financial systems with credit default swaps,
many possible origins of computational complexity come to mind:

a) Banks’ liabilities may form a cycle, creating “feedback loops” where banks are highly
sensitive to changes in the assets of the other banks. These cycles may even be
interlinked when banks have liabilities to more than one creditor, where the principle
of proportionality leads to a strong coupling between a cycle and the rest of the
system.

b) In the definition of approximately clearing recovery rates, there are two sources of
non-linearities:

• In CDSs, having both counterparty risk (i.e., the dependence of banks on the
recovery rates of their debtors) and fundamental risk (i.e., the dependence of
CDS holders and writers on the recovery rates of reference entities) introduces
quadratic terms into the definition of the assets ai of a bank.

• The liabilities of CDS writers depend on the recovery rates of other banks, which
introduces terms of form 1

1−rk into the function ai
li

.

c) The complexity could come from determining which banks are in default while com-
puting the values of recovery rates could be easy.

We show that of these points, a) and b) cannot alone be the origin of the complexity
while we answer the last point in the affirmative. We first notice that all our gadgets, and
thus the financial systems we use to show PPAD-hardness, share three properties that make
them particularly simple financial systems:

1. Acyclic Liabilities: The graph of writer-holder relationships of contracts is acyclic.

2. Outside Insurers: CDS writers are highly capitalized banks: their external assets are
significantly (by factor 2 ≥ 1 + ε, for any relevant ε) higher than the total notional of
their contracts written and thus, they have recovery rate 1 in any ε-solution.

4 Such a financial system is described in (Schuldenzucker et al., 2016, Figure 3, δ = γ = 1).
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3. No Counterparty Risk: Contracts are either written by a highly capitalized source
bank s or held by a sink bank t with zero liabilities.5

The first property implies that cycles of liabilities cannot be the reason for PPAD-
hardness. The second property implies that we never have both counterparty and funda-
mental risk at the same time in our construction, so banks’ assets never contain quadratic
terms. It further implies that banks that are at the risk of defaulting do not write CDSs
and thus their liabilities are constant, so ai

li
never contains terms of form 1

1−rk . The third
property implies that proportionality is not relevant.

To answer the remaining question if it is easier to compute the set of defaulting banks
than to compute approximate recovery rates, we introduce the notion of a default set as
the set of banks that do not pay their liabilities in full at a given recovery rate vector:

Definition 6.1 (Default Set). If r is a recovery rate vector, define the default set of r as

D(r) := {i ∈ N | ri < 1} .

The following theorem and corollary show that in the setting of our construction, it is
easy to determine recovery rates once the default set is known, so hardness of the problem
must stem from having to compute default sets. We receive as an additional result that our
construction in fact has an exact solution of polynomial length (but finding it is PPAD-
hard).

Theorem 6.2. Given ε ≥ 0, a financial system without default costs with outside insurers,
and the default set of any ε-solution, one can compute an ε-solution in time polynomial in
the length of the financial system.

Proof. Let ε ≥ 0. Let X = (N, e, c) be a financial system with outside insurers (with
respect to ε) and let M ⊆ N be the set of banks i for which ei < (1+ε)(

∑
j c
∅
i,j +

∑
j,k c

k
i,j).

By assumption, banks in M do not write CDSs, so li(r) =: li is a constant for all i ∈ M .
Assume WLOG li > 0 for all i ∈M . CDSs held by banks in M are further only written by
banks outside M , so that for the assets of a bank i ∈M we have in any ε-solution r that

ai(r) = ei +
∑

j∈N\M

c∅j,i +
∑
j∈M

c∅j,irj +
∑

j∈N\M
k∈M

ckj,i(1− rk)

is a linear term in r. The expression does not contain any rj with j ∈ N \M because we
have rj = 1 for these j.

5 To ease presentation, we assume in the following that all source banks s and all sink banks t, respectively,
are the same. This does not change the solutions for the other banks.
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Let nowD ⊆ N and consider the following linear program with variables rM := (ri)i∈M :

min ε̃ s.t. (2)

ε̃ ≥ 0

For all i ∈M : 0 ≤ ri ≤ 1

For all i ∈M \D :

ai(rM )

li
≥ 1− ε̃

ri = 1

For all i ∈M ∩D :
ai(rM )

li
≤ 1 + ε̃

ri =
ai(rM )

li
± ε̃

The two cases i ∈M \D and i ∈M ∩D correspond to parts b) and c) of Proposition 4.2,
respectively. One checks that any ε-solution with default set D is a feasible solution of the
LP with objective value ε̃ ≤ ε. Vice versa, any such solution to the LP gives rise to an
ε-solution of the financial system by setting the recovery rates of banks outside M to 1.
The default set of this ε-solution may not be D, though.

Now, if D if the default set of some ε-solution, then the LP for D must be feasible
with optimal value ≤ ε. Since the LP has polynomial size in the financial system, we can
compute in polynomial time an optimal solution r to the LP via the ellipsoid method. By
optimality, r must have value ≤ ε and thus be an ε-solution.

Corollary 6.3. There exists an ε > 0 such that the following problem is PPAD-complete:
given a nondegenerate financial system without default costs, find a set of banks that is the
default set of some ε-solution. The problem remains PPAD-complete when restricted to
financial systems with acyclic liabilities, outside insurers, and no counterparty risk.

Proof. The statement follows immediately from Theorem 6.2 and the fact that our con-
struction in the PPAD-hardness proof had the mentioned properties.

Corollary 6.4. Any financial system without default costs with outside insurers (with re-
spect to ε = 0) has an exact solution of polynomial length; finding one is PPAD-hard.

Proof. The existence statement follows from Theorem 6.2 for ε = 0 when applied to the
default set of any exact solution. PPAD-hardness is clear.

Coming back to our discussion on the origin of the complexity, we highlight the unique
property of CDSs that banks can have an “inverse relationship” or short position on each
other: the holder of a CDS profits from the ill-being of the reference entity, which allows
us to implement operations such as logical negation. This effect is only present when
CDSs are held by banks in a naked fashion, i.e., without holding a corresponding debt
contract from the reference entity. We have shown that even the simplest kinds of financial
networks, if they contain naked CDSs, can lead to PPAD-hardness. Without naked CDSs
however, it is hard to imagine how anything close to our construction could be carried
out. We conjecture that financial networks in which naked CDSs are not allowed admit
a polynomial-time algorithm, similar to debt-only networks. Due to non-linearities in the
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function ai
li

, developing such an algorithm is not straightforward and beyond the scope of

this paper.6

7 Conclusion

In this paper, we have studied the problem of computing clearing payments in financial
networks with debt and credit default swap (CDS) contracts and without default costs. We
have shown that compared to debt-only networks, the addition of CDSs turns the clearing
problem from being solvable exactly in polynomial time into an approximation problem that
is PPAD-complete even when the desired approximation quality is kept constant. Conse-
quently, no polynomial-time approximation scheme exists unless P=PPAD. We have shown
that even though general financial networks with CDSs could exhibit high computational
complexity for many different reasons, the clearing problem is already PPAD-complete in
the special case with acyclic liabilities, outside insurers, and no counterparty risk. In fact,
already determining which banks are in default and which are not is a PPAD-complete
problem.

Future work should investigate if the clearing problem can be solved in polynomial time
when naked CDS positions are not allowed. We conjecture that this is the case. Another
important task for future research is to find algorithms for the general case that may not
have polynomial worst-case running time, but are fast in practice. These algorithms could
work by iterating over default sets in a systematic fashion. All algorithms that are not
restricted to outside insurers must in addition be able to deal with non-linearities in the
function ai

li
.
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Figure 7 Financial System without default costs where the unique solution is irrational.
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APPENDIX

A Irrational Solutions

Example A.1 (Irrational Solutions). Figure 7 shows a financial system the unique solution
of which is irrational. To see this, note that by the contract structure r is clearing iff

rA =
1

2
rB , rB =

1

2− rA
,

and rC is left unconstrained. One easily checks that the unique solution in [0, 1]2 to this
system of equations is given by

rA = 2−
√

2, rB = 1− 1√
2
.

B Properties of Approximate Solutions

Our definition of an approximate solution is well motivated from an economic point of view:
assume that a bank A holds a debt contract of notional γ from bank B as well as a CDS
on B from a highly capitalized bank C with the same notional. This contract pattern is
called a covered CDS and it was the original use case CDSs were designed for: the CDS
insures the debt contract. While nowadays, a large part of the CDSs are traded naked (i.e.,
they do not have this property), the covered case serves as a benchmark to which extent
our solution concept is natural.

We describe the effect of ε errors in recovery rates on the three banks. If the insurer
C is highly capitalized (its assets are greater than its liabilities by a factor 1 + ε), then C
never defaults (rC = 1) and the assets of A are

γrB + γ(1− rB)rC = γ.

That is, the covered CDS acts as a “full” insurance that eliminates A’s dependence on B.
This property is not affected by ε errors in the recovery rates of any bank. On the other
hand, the writer C of the CDS might incur higher or lower liabilities due to errors in rB ,
but this difference is bounded by εγ. Finally, the recovery rate of B might be up to ε lower

or higher than aB(r)
lB(r) . If it is lower, then B may keep up to εγ of its assets even though

it is in default. If it is higher however, then B must make up to εγ in payments from
money it does not have. This money would have to come from an external entity such as a
government institution or the clearing mechanism itself. This is why clearing mechanisms
should seek ε-solutions where ε is small compared to the inverse notionals in the system.

21



The following elementary properties serve as an indication that our definition of an
approximate solution is also natural from a technical point of view. They are all easy to
validate.

Proposition B.1 (Natural Properties of Approximate Solutions). Fix a financial system
without default costs.

1. Any r is a 1-solution. r is a 0-solution iff it is an exact solution.

2. If ε ≤ ε′, then any ε-solution is also an ε′-solution.

3. r is an ε-solution iff r is an ε′-solution for all ε′ > ε.

4. Given r and ε, one can check in polynomial time if r is an ε-solution via interval
arithmetic.

C Proofs from Section 4

The following lemma lets us express ε-FindClearing as the problem of finding an approx-
imate fixed point of a certain Lipschitz continuous function. Then the lemma and theorem
follow using standard techniques.

Lemma C.1. Given a nondegenerate financial system without default costs X = (N, e, c)
and ε > 0 define the function

F : [0, 1 + ε]N → [0, 1 + ε]N

Fi(s) :=

{
[ai([s])li([s])

]
1+ε

if li([s]) > 0

1 + ε if li([s]) = 0

where [x]
1+ε

:= min(1 + ε, max(0, x)) and [s] := ([s1], ... , [sn]).
Then the following hold:

1. F is Lipschitz continuous with a Lipschitz constant polynomial-time computable from
X and ε.

2. If s is an ε-approximate fixed point of F , then [s] is an ε-solution of X.

Proof. Part 1: It is sufficient to show that each Fi has an appropriate Lipschitz constant.
So let i ∈ N . By nondegeneracy, bank i must fall into one of three cases: it either writes
no contracts at all, or writes a debt contract, or has positive external assets. If i writes no
contracts, then Fi is constant 1 + ε.

If i writes a debt contract, then li([s]) > 0 for all s, so

F (s) =

[
ai([s])

li([s])

]1+ε

=

(
[·]1+ε ◦ ai

li
◦ [·]
)

(s).

The functions [·]1+ε
and [·] are Lipschitz with constant 1. For ai

li
, we find a bound on the

partial derivatives. We have

∂ aili
∂rk

=

∂ai
∂rk

li − ai ∂li∂rk

l2i

=
(lk,i −

∑
j rjc

k
j,i) · li + ai ·

∑
j c
k
i,j

l2i
.
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where the second line is easily seen by expanding ai and li. The numerator is bounded from
above in absolute value by

N i
k :=

c∅k,i +
∑
j

cjk,i

 ·
∑

j

c∅i,j +
∑
j,l

cli,j

+

ei +
∑
j

c∅j,i +
∑
j,l

clj,i

 ·∑
j

ckj,i

and the denominator is bounded from below by Di := (
∑
j c
∅
i,j)

2. Thus, the partial deriva-

tive is bounded by
Nik
Di and this bound is polynomial in X.

If i has positive external assets, then let Li := {s | li([s]) > ei}. For s /∈ Li, we have
Fi(s) = 1 + ε and further Fi(s) → 1 + ε as li([s]) → ei. On Li, one receives a Lipschitz

constant for the restriction of [ai([s])li([s])
]
1+ε

to Li by applying the same reasoning as above

with Di := e2
i . Thus, Fi is the continuous union of two Lipschitz continuous functions and

thus itself Lipschitz with the constant being the maximum of the two Lipschitz constants,

namely maxk
Nik
Di

.

Part 2: Let s be an ε-approximate fixed point of F . Let i ∈ N and let s̃i := ai(r)
li(r)

∈
[0,∞). We have Fi(s) = [s̃i]

1+ε
and thus

si = [s̃i]
1+ε ± ε

⇒ [si] ∈
[
[s̃i]

1+ε ± ε
]

= [s̃i ± ε]

where the last equality is easily seen by case distinction on s̃i ≥ 1 + ε and s̃i < 1 + ε. Thus,
[s] is an ε-solution at i.

Proof of Lemma 4.5. Let X and ε be given and consider the function F from Lemma C.1.
Let K be the Lipschitz constant and recap that K is polynomial in X and ε. Since F is
continuous on a compact domain, by Brouwer’s fixed point theorem, it has an (exact) fixed
point s. Let δ = ε

K+1 . Let s′ be defined by s′i := δbδ−1sic. That is, s′i is si rounded to
multiples of δ. s′ has length n · L where L is the length of δ, and L is polynomial in the
lengths of X and ε.7 Further,

‖s′ − F (s′)‖ ≤ ‖s′ − F (s)‖+ ‖F (s′)− F (s)‖
= ‖s′ − s‖+ ‖F (s′)− F (s)‖
≤ δ +Kδ = (1 +K)δ = ε.

Hence, s′ is an ε-approximate fixed point of F and thus an ε-solution.

Proof of Theorem 4.6. Proof by reduction to the PPAD-complete generic Brouwer prob-
lem (Daskalakis et al., 2009):

Given an efficient algorithm for the evaluation of a function F : [0, 1]m → [0, 1]m,
a Lipschitz constant K for F , and an accuracy ε > 0, compute a point x such
that ‖F (x)− x‖ ≤ ε.

We apply the generic Brouwer problem to the function F from Lemma C.1. One
checks that one may replace the domain [0, 1] by [0, 1 + ε] without changing the problem in
any significant way (e.g., by scaling inputs and outputs of F by a factor 1 + ε and replacing
ε by ε

1+ε ≥
1
2ε). Again by Lemma C.1, we know that the output of the Brouwer problem

gives rise to an ε-solution for X.
7 We assume here that numbers are encoded as fractions of binary integers. Alternatively, one could

choose δ to be the largest power of two ≤ ε
K+1

.
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D Proofs from Section 5.1

Proof of Lemma 5.5. We show that the approximate solutions of a circuit correspond to
the approximate fixed points of a certain Lipschitz continuous function. The statement of
the lemma then follows like in the proofs of Lemma 4.5 and Theorem 4.6.

For given C and ε define gate functions fg : [0, 1]k → [0, 1], where k ∈ {0, 1, 2}, as
follows:

fCζ := ζ

fC+(a, b) := [a+ b]

fC−(a, b) := [a− b]
fC×ζ (a) := [ζ · a]

fC>ζ (a) :=

[
1

2ε
a+

1

2
− ζ

2ε

]
fC>ζ is the continuous function connecting the points (0, 0), (0, ζ − ε), (1, ζ + ε), and (1, 1)
via straight lines. All gate functions are Lipschitz with constant K := max(2, ζmax,

1
2ε )

where ζmax is the maximum ζ such that C has a C×ζ gate.
Let N be the set of nodes in the circuit. We define a function F : [0, 1]N → [0, 1]N . For

x ∈ [0, 1]N and i ∈ N let Fi(x) be defined as follows:

• If i is an output of a gate g and the inputs of g are nodes a1, ... , ak, then Fi(x) :=
fg(xa1 , ... , xak).

• If i is output of no gate, then Fi(x) := xi.

Any ε-approximate fixed point of F is an ε-solution of C, though the converse does not
hold. Since all gate functions are Lipschitz with constant K, so is F .

The first part of the lemma now follows just like in the proof of Lemma 4.5: if x is
an exact fixed point of F and x′ is x rounded to multiples of δ := ε

K+1 , then x′ is an
ε-approximate fixed point of F and thus an ε-solution of C and has polynomial length. It
is not a problem that K depends on ε.

The second part of the lemma follows by reduction to the generic Brouwer problem
just like in the proof of Theorem 4.6. This in fact proves that the weakly harder problem of
computing an ε-solution where ε is not a parameter, but part of the input, is still in PPAD.
It is again not a problem that K depends on ε because the generic Brouwer problem takes
the Lipschitz constant as an input, just like ε.
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