
The Computational Complexity of

Clearing Financial Networks with Credit Default Swaps∗

Steffen Schuldenzucker
University of Zurich

Sven Seuken
University of Zurich

Stefano Battiston
University of Zurich

First version: October 5, 2017
This version: November 1, 2017

Abstract

We consider the problem of clearing a system of interconnected banks. Prior work
has shown that when banks can only enter into simple debt contracts with each other,
then a clearing vector of payments can be computed in polynomial time. In this
work, we show that the computational complexity of the clearing problem drastically
increases when banks can also enter into credit default swaps (CDSs), i.e., financial
derivative contracts that depend on the default of another bank. We first show that
many important decision problems are NP-hard once CDSs are allowed. This includes
deciding if a specific bank is at risk of default and deciding if a clearing vector exists
in the first place. Second, we show that computing an approximate solution to the
clearing problem with sufficiently small constant error is PPAD-complete. To prove
our results, we demonstrate how financial networks with debt and CDSs can encode
Boolean and arithmetic operations. Our results have practical importance for network
stress tests and they reveal computational complexity as a new concern regarding the
stability of the financial system.

1 Introduction

We consider systems of banks (or other financial institutions) that are interconnected by
financial contracts. Some of the banks may not be able to meet their obligations towards
other banks (e.g., because they experienced a shock on their assets), thus forcing them into
bankruptcy (or default). In this setting, we study the clearing problem: for each bank, we
are looking for its recovery rate, i.e, the percentage of its liabilities it can pay to its creditors.

∗Steffen Schuldenzucker, Sven Seuken: Department of Informatics, University of Zurich, Switzerland,
Email: {schuldenzucker,seuken}@ifi.uzh.ch. Stefano Battiston: Department of Banking and Finance, Uni-
versity of Zurich, Switzerland, Email: stefano.battiston@uzh.ch. We would like to thank (in alphabetical
order) Vitor Bosshard, Gianluca Brero, Yu Cheng, Constantinos Daskalakis, Robert Kleinberg, Timo Mennle,
Thomas Noe, Christos Papadimitriou, Aviad Rubinstein, and Joseph Stiglitz for helpful comments on this
work. Furthermore, we are thankful for the feedback we received from various participants at EC 2016 and
ITCS 2017. Some of the ideas presented in Section 5 of this paper were also described in a one-page abstract
that was published in the conference proceedings of EC’16 (Schuldenzucker, Seuken and Battiston, 2016).
Section 6 of this paper contains results that were previously described in a paper that was published in the
conference proceedings of ITCS’17 (Schuldenzucker, Seuken and Battiston, 2017b). This project has received
funding from the European Union’s Horizon 2020 research and innovation programme under the DOLFINS
project, grant agreement No 640772.

1

Recovery rates must be in accordance with the standard bankruptcy regulations. Banks
may lose a percentage of their assets upon defaulting (i.e., they incur default costs). The
clearing problem can be challenging because banks typically cover their obligations based on
the payments they receive from other banks and the structure of contractual relationships
can be complex and is often cyclic.

In their seminal paper, Eisenberg and Noe (2001) showed that the clearing problem
always has a solution and that this solution can be computed in polynomial time.1 Their
result relies on the assumption that banks can only enter into simple debt contracts, i.e.,
loans from one bank to another. We argue, however, that the growing importance of financial
derivatives makes it necessary to reconsider the question if today’s financial networks can still
always be efficiently cleared. Specifically, credit default swaps (CDSs), which are financial
contracts that depend on the default of a reference entity, have received only little attention
in a network context so far. Market participants use CDSs to insure themselves against
a default of the reference entity or to place a speculative bet on this event. Because the
reference entity can itself be a financial institution, CDSs create new dependencies that do
not exist in debt-only networks.2

In prior work (Schuldenzucker, Seuken and Battiston, 2017a), we have shown that
existence of a solution to the clearing problem is no longer guaranteed in financial networks
consisting of both debt contracts and CDSs. From this insight, two research questions arise
naturally regarding the computational aspects of the clearing problem with CDSs: first, can
we determine efficiently whether a solution exists in a given network? And second, given a
network where a solution is known to exist, can we efficiently compute it?

In this paper, we answer both questions in the negative. Towards the first question,
we show that it is computationally infeasible to make virtually any statement about the
solution structure of a financial network with CDSs: determining if a solution exists as well
as deciding if a specific bank will be in default in some solution are all NP-hard.3 Towards
the second question of computing a solution to the clearing problem, we restrict our attention
to the case without default costs, where a solution is known to always exist (Schuldenzucker,
Seuken and Battiston, 2017a). We show that approximately computing such a solution
is PPAD-hard for a certain constant approximation quality. Thus, no polynomial-time
approximation scheme (PTAS) exists, unless P=PPAD. We further show that the complexity
of the problem originates not exclusively from the task of computing the precise values of
the recovery rates, but already determining the set of defaulting banks is PPAD-hard.

Our hardness results have practical relevance for stress tests, in which regulators such
as the European Central Bank (ECB) evaluate the stability of the financial system under
an array of adverse economic scenarios. These stress tests are increasingly designed with a
macroprudential mindset, where the financial system is viewed as a whole. Consequently,
it becomes ever more important that stress tests consider network effects. For example,
the ECB’s STAMPe framework (Dees, Henry and Martin, 2017) includes a model for the
assessment of interbank contagion that is very similar to (Eisenberg and Noe, 2001). The
clearing problem is solved many thousands of times to obtain a probability distribution

1 The solution computed by their algorithm further has the special property that it maximizes the
recovery rate of each individual bank among all solutions.

2The market for these CDSs has grown to a significant size. A report by the Bank for International
Settlements (2017, section single-name CDSs, financial firms) states that the total notional of the CDSs
written by financial institutions on each other was USD 1.4 trillion in the first half of 2016. D’Errico et al.
(2016) have shown that these CDSs form a densely connected network.

3To establish that these problems are also in NP, and thus NP-complete, one would need a polynomial-time
witness for, e.g., existence of a solution. We leave it open to future work to explore whether such a witness
exists. The solutions themselves cannot be used here because with CDSs, solutions can be irrational (cf.
below).

2

of losses and to compensate for uncertainty about the contract structure. Therefore, it is
crucial that the clearing problem can be solved quickly. Our results imply that stress testing
in networks of debt and CDSs using a similar approach would have regulators face significant
computational barriers.

2 Related Work

The main focus of prior work on financial networks has been so far on financial contagion
(i.e., the mechanism by which small shocks to individual market participants can lead to
larger losses for the system as a whole), and on the question of which network topologies are
particularly susceptible to such effects (Allen and Gale, 2000; Stiglitz, 2010; Roukny et al.,
2013; Acemoglu, Ozdaglar and Tahbaz-Salehi, 2015). In particular, several works have shown
how a trade-off between the stabilizing effect of diversification and the destabilizing effect
of contagion emerges (Battiston et al., 2012a; Elliott, Golub and Jackson, 2014; Battiston
et al., 2016a; Bardoscia et al., 2017) when obligations are valued before their maturity and
there are bankruptcy costs (Battiston et al., 2012b; Barucca et al., 2016; Visentin, Battiston
and D’Errico, 2016).

The clearing problem was first studied by Eisenberg and Noe (2001), who showed that
in debt networks, clearing payments always exist and can be computed in polynomial time.
Rogers and Veraart (2013) extended their result to debt networks with default costs. In prior
work (Schuldenzucker, Seuken and Battiston, 2017a), we further extended this model to
CDSs. We showed that the clearing problem in these networks is significantly more complex
than in the debt-only case: if default costs are present, then clearing payments may not
exist.

A field that has only developed recently is the application of computational complexity
theory to financial markets. Arora et al. (2010) and Zuckerman (2011) investigated the cost
of asymmetric information in financial derivatives markets with computationally bounded
agents. Braverman and Pasricha (2014) provided computational hardness results on fair
pricing of compound options. Hemenway and Khanna (2015) showed that in Elliott, Golub
and Jackson’s model, it is computationally infeasible to determine the distribution of a given
total negative shock to the banks that has the worst impact in terms of value. In contrast,
we prove that in financial networks with CDSs, it is already computationally infeasible to
determine the impact of a known distribution of shocks to banks.

We capture the complexity of the search problem (Section 6) by means of the PPAD
complexity class (Papadimitriou, 1994). This class is best known for the problem of computing
a Nash equilibrium, the hardness of which was shown by reduction from generalized circuits
(Daskalakis, Goldberg and Papadimitriou, 2005; Chen, Deng and h. Teng, 2006; Daskalakis,
2013; Rubinstein, 2015). Our work builds on this technique, and in particular on Rubinstein’s
(Rubinstein, 2015) PPAD-hardness result for constant accuracy. To the best of our knowledge,
we are the first to implement generalized circuits using financial networks and we are the
first to present a case where the clearing problem has high computational complexity.

3 Formal Model and Visual Representation4

We use our formal model from (Schuldenzucker, Seuken and Battiston, 2017a). The model
is based on Eisenberg and Noe’s (2001) model and its extension to default costs by Rogers

4This section has previously appeared in our prior work (Schuldenzucker, Seuken and Battiston, 2017a).
We repeat it here for convenience.

3

and Veraart (2013). Both of these prior models were restricted to debt contracts. We define
an extension to credit default swaps. Following said prior work, we assume a static model
where a financial system is given exogenously and all contracts are evaluated simultaneously.
We adjust the notation where necessary.

3.1 The Model

We define the elements of the financial system.

Banks and external assets. We denote by N a finite set of banks. Each bank i ∈ N
holds a certain amount of external assets, denoted by ei ≥ 0. Let e = (ei)i∈N denote the
vector of all external assets.

Contracts. There are two types of contracts: debt contracts and credit default swaps
(CDSs). Every contract gives rise to a conditional obligation to pay a certain amount, called
a liability, from its writer to its holder. Banks that cannot fulfill this obligation are said to
be in default. The recovery rate ri of a bank i is the share of its liabilities it is able to pay.
Thus, ri = 1 if i is not in default and ri < 1 if i is in default. Let r = (ri)i∈N denote the
vector of all recovery rates.

A debt contract obliges the writer i to unconditionally pay a certain amount to the holder
j. The amount is called the notional of the contract and is denoted by c∅i,j . A credit default
swap obliges the writer i to make a conditional payment to the holder j. The amount of
this payment depends on the recovery rate of a third bank k, called the reference entity.
Specifically, the payment amount of the CDS from i to j with reference entity k and notional
cki,j is c

k
i,j · (1− rk).

Note that when banks enter contracts, there typically is an initial payment. For example,
debt contracts arise because the holder lends an amount of money to the writer, and holders
of CDSs pay a premium to obtain them. In our model, we assume that any initial payments
have been made at an earlier time and are implicitly reflected by the external assets.

The contractual relationships between all banks are represented by a 3-dimensional matrix
c = (cki,j)i∈N, j∈N, k∈N∪{∅}. Zero entries indicate the absence of the respective contract.

We make two sanity assumptions to rule out pathological cases. First, we require that
no bank enters into a contract with itself or on itself (i.e., c∅i,i = cji,i = cji,j = cii,j = 0 for all
i, j ∈ N). Second, as CDSs are defined as insurance on debt, we require that any bank that
is a reference entity in a CDS must also be writer of a debt contract (i.e., if

∑
k,l∈N c

i
k,l > 0,

then
∑
j∈N c

∅
i,j > 0 for all i ∈ N).

For any bank i, the creditors of i are those banks that are holders of contracts for which
i is the writer, i.e., the banks to which i owes money. Conversely, the debtors of i are the
writers of contracts of which i is the holder, i.e., the banks which owe money to i. Note that
the two sets can overlap: for example, a bank could hold a CDS on one reference entity
while writing a CDS on another reference entity, both with the same counterparty.

Default Costs. We model default costs following (Rogers and Veraart, 2013): there are
two default cost parameters α, β ∈ [0, 1]. Defaulting banks are only able to pay to their
creditors a share of α of their external assets and a share of β of their incoming payments.
Thus, α = β = 1 means that there are no default costs and α = β = 0 means that assets
held by defaulting banks are worthless. The values 1− α and 1− β are the default costs.5

5Default costs could result from legal and administrative costs, a delay in payments, or from fire sales
when defaulting banks need to sell off their assets quickly. Details can be found in (Rogers and Veraart,
2013).

4

To simplify the exposition, we assume default costs to be the same across all banks.
However, our model as well as our results easily generalize to individual default cost
parameters αi and βi for i ∈ N with minor adjustments.

Financial System. A financial system is a tuple (N, e, c, α, β) where N is a set of banks,
e is a vector of external assets, c is a 3-dimensional matrix of contracts, and α and β are
default cost parameters.

Liabilities, Payments, and Assets. For two banks i, j and a vector of recovery rates r,
the liability of i to j at r is the amount of money that i has to pay to j if recovery rates in
the financial system are given by r, denoted by li,j(r). It arises from the aggregate of all
debt contracts and CDSs from i to j;

li,j(r) := c∅i,j +
∑
k∈N

(1− rk) · cki,j .

The total liabilities of i at r are the aggregate liabilities that i has toward other banks given
the recovery rates r, denoted by li(r);

li(r) :=
∑
j∈N

li,j(r).

The actual payment pi,j(r) from i to j at r can be lower than li,j(r) if i is in default. By
the principle of proportionality (discussed below), a bank that is in default makes payments
for its contracts in proportion to the respective liability;

pi,j(r) := ri · li,j(r).

The total assets ai(r) of a bank i at r consist of its external assets ei and the incoming
payments;

ai(r) := ei +
∑
j∈N

pj,i(r).

In case bank i is in default, its assets after default costs a′i(r) are the assets reduced according
to the factors α and β. This is the amount that will be paid out to creditors;

a′i(r) := αei + β
∑
j∈N

pj,i(r).

Clearing Recovery Rate Vector. Following Eisenberg and Noe (2001), we call a recovery
rate vector r clearing if the payments pi,j(r) are in accordance with the following three
principles of standard bankruptcy law:

1. Absolute Priority : Banks with sufficient assets pay their liabilities in full. Thus, these
banks have recovery rate 1.

2. Limited Liability : Banks with insufficient assets to pay their liabilities are in default
and pay all of their assets to creditors after default costs have been subtracted. Thus,

these banks have recovery rate
a′i(r)
li(r)

< 1.

3. Proportionality : In case of default, payments to creditors are made in proportion to
the respective liability.

The principle of proportionality is automatically fulfilled in our model by the definition
of the payments pi,j(r). The other two principles lead to the following definition.

5

Figure 1 Example financial system with α = β = 0.5

A

B C
1

2
1

0

2 1

Definition 1 (Clearing Recovery Rate Vector). Let X = (N, e, c, α, β) be a financial system.
A recovery rate vector is a vector of values ri ∈ [0, 1] for each i ∈ N . We denote by [0, 1]N

the space of all possible recovery rate vectors. Define the update function

F : [0, 1]N → [0, 1]N

Fi(r) :=

{
1 if ai(r) ≥ li(r)
a′i(r)
li(r)

if ai(r) < li(r).
(1)

A recovery rate vector r is called clearing for X if it is a fixed point of the update function,
i.e., if Fi(r) = ri for all i. We also call a clearing recovery rate vector a solution to the
clearing problem.

Remark 1 (Clearing Recovery Rates and Clearing Payments). Instead of clearing recovery
rates, one may equivalently consider clearing payments (as Eisenberg and Noe (2001) did)
and we will sometimes use this formulation in our proofs. If r is clearing, then the total
payments of any bank i are either equal to its liabilities (if i is not in default) or they are
equal to its assets after default costs (if i is in default). That is, we have

∑
j∈N

pi,j(r) =

{
li(r) if ai(r) ≥ li(r)
a′i(r) if ai(r) < li(r).

(2)

Vice versa, if (2) holds, then r is clearing.6

3.2 Example and Visual Representation

Figure 1 shows a visual representation of an example financial system. There are three
banks N = {A,B,C}, drawn as circles, with external assets of eA = 0, eB = 2, and eC = 1,
drawn as rectangles on top of the banks. Debt contracts are drawn as blue arrows from
the writer to the holder and they are annotated with the notionals c∅B,A = 2 and c∅B,C = 1.
CDSs are drawn as orange arrows, where a dashed line connects to the reference entity, and
are also annotated with the notionals: cBA,C = 1. Default cost parameters α = β = 0.5 are
given in addition to the picture.

A clearing recovery rate vector for this example is given by rA = 1, rB = 1
3 , and rC = 1.

The liabilities arising from this recovery rate vector are lB,A(r) = 2, lB,C(r) = 1, and

6One special case must be considered separately: banks that have zero liabilities. The recovery rates
of these banks are left unconstrained by (2), but are required to be equal to 1 by Definition 1. However,
due to our assumptions, no other bank depends on these banks, so this difference does not matter. Thus, r
becomes clearing (according to Definition 1) by simply setting the recovery rates of these banks to 1.

6

lA,C(r) = 2
3 . Payments are pB,A(r) = 2

3 , pB,C = 1
3 , and pA,C(r) = 2

3 . This is the only
solution for this system.

4 The Effect of CDSs on the Solution Set

Rogers and Veraart (2013) have shown that in debt networks, the function F is always
piecewise linear and monotonic (i.e., if r ≤ r′ point-wise, then also F (r) ≤ F (r′) point-wise).
This implies that the clearing problem always has a solution and it in fact always has a
solution that point-wise dominates all other solutions. Eisenberg and Noe’s (2001) fictitious
default algorithm computes this solution, relying on linearity and monotonicity.

In our prior work, we have shown that the behavior of a financial system changes radically
once CDSs are introduced into the model. Looking at the update function F , the assets ai(r)
now not only contain linear terms of form c∅j,i · rj , but also terms of form ckj,i · rj · (1− rk).
That is why Fi is non-linear and non-monotonic in r. For example, in the above term,
Fi would be increasing in rj and decreasing in ri. In more complex situations, whether
Fi is increasing or decreasing in rj can depend on the recovery rates of the other banks.
Non-linearity and in particular non-monotonicity are the reason why prior algorithmic
approaches cannot be used any more with financial systems that contain CDSs.

We have shown in (Schuldenzucker, Seuken and Battiston, 2017a) that the different
properties of the update function F imply different possible shapes of the solution set
compared to debt-only systems:

Proposition 1 (Schuldenzucker, Seuken and Battiston (2017a)).

1. For any pair (α, β) with α < 1 or β < 1 there exists a financial system (N, e, c, α, β)
that has no clearing recovery rate vector.

2. Any financial system (N, e, c, α = 1, β = 1) has a clearing recovery rate vector.

3. For any α and β there exists a financial system (N, e, c, α, β) with four banks that has
exactly two clearing recovery rate vectors, namely (1, 0, 1, 1) and (0, 1, 1, 1).7

Part 1 of the proposition shows that as soon as any default costs are present and CDSs
are allowed, the clearing problem may have no solution at all. Our counterexample is
illustrated in Figure 2. Intuitively, the reason why this system has no solution is that if A is
in default, then B, and therefore A itself receive the CDS payment, and therefore A “should
not” be in default. Vice versa, if A is not in default, then B and thus A receive nothing,
so A “should be” in default. Default costs create a discontinuity in the update function F
that separates the states “in default” and “not in default” from each other so that this case
distinction is justified.

Part 2 shows that default costs are necessary for non-existence: if default costs are
not present, then a solution always exists. The proof, however, is by a non-constructive
fixed-point argument so that it is not immediately clear how a solution would be found in
this case. We discuss the complexity of the associated search problem in Section 6.

Part 3 of the proposition illustrates a particularly undesirable case of multiple solutions:
while in debt-only systems, it would typically be enough to only consider the unique maximal
solution, CDSs can lead to a situation where one has to deal with true multiplicity. The
corresponding construction is depicted in Figure 3. The intuition is that A relies on the

7 The original result in (Schuldenzucker, Seuken and Battiston, 2017a) had three solutions in case β = 1.
We slightly adjusted our example, shown in Figure 3, such that there are always exactly two solutions.

7

Figure 2 (Schuldenzucker, Seuken and Battiston, 2017a) Financial system with no solution
for α < 1 or β < 1. For β < 1, let eA = 0, γ = 1, and δ = 3 · 1

1−β . For α < β = 1, let

eA = 1
2 , γ = 3−α

4 , and δ = 3−α
1−α .

D A B

C

1 γ

δ

1 eA 0

δ

Figure 3 (adapted from (Schuldenzucker, Seuken and Battiston, 2017a)) Financial system
with solutions (1, 0, 1, 1) and (0, 1, 1, 1). Let δ = 1

1−β if β < 1 and δ > 1 arbitrary if β = 1.

C

A

B

D

1

1

δ

1
δ + 1

0

0

0

default of B and vice versa, so exactly one of the two banks can be made well off. Note that
this counterexample can be constructed both with or without default costs.

The two counterexamples in Figure 2 and 3 will serve as important building blocks for
our reduction proofs in Section 5 and 6. Note that our counterexamples have size polynomial
in the lengths of α and β.

5 The Complexity of Deciding Defaults

Given a financial network, we consider two fundamental decision problems: first, we want
to know if a solution to the clearing problem exists at all. Second, for an individual bank,
we are interested in whether this bank defaults in all solutions, no solution, or if its default
depends on the solution. We will show that all of these problems are NP-hard.

We show NP-hardness via reduction from the Circuit Satisfiability problem.8 We proceed
in three steps:

1. We show how a single logic gate can be translated into a financial system.

2. We combine copies of these financial gates to translate a whole Boolean circuit into a

8 Recall that a Boolean circuit is an abstract description of a digital logic circuit. An acyclic graph
structure connects the inputs of the circuit and a set of logic gates, encoding Boolean functions such as
AND, OR, or NOT. A single node is marked as the output . The inputs receive an assignment (a tuple of 0s
and 1s) and the value of the output is computed by evaluating all gates. The size of a Boolean circuit is the
number of gates plus the number of inputs. The NP-complete Circuit Satisfiability problem asks for a given
Boolean circuit whether there is an assignment that makes the output 1.

8

Figure 4 Existing financial system X with input banks a and b and new banks s, t, u, v
and contracts that translate a NOR gate. We have rv = ra NOR rb whenever r is clearing.

s u v t
11

a

1

b

X

1 0 0 0

financial system. We additionally use Figure 3 (two solutions) for the inputs of the
circuit and we use Figure 2 (no solution) to constrain the output of the circuit.

3. We use this translation to show how, assuming that we have an efficient algorithm
to decide the above questions, we could obtain an efficient algorithm to solve Circuit
Satisfiability.

5.1 Boolean Circuits as Financial Systems

We can assume WLOG that the involved Boolean circuits are constructed entirely of NOR
gates, defined by aNOR b = ¬(a ∨ b). This assumption is valid because NOR forms a basis
of propositional logic. To translate a Boolean circuit into a financial system, we need thus
only be able to translate its basic building block, a NOR gate. We then combine these gates
to larger circuits in a second step.

The translation of a NOR gate cannot be described as a single financial system because
financial systems lack the notion of an “input”. Instead, the following lemma shows how to
extend an existing financial system with two input banks a and b by adding four new banks
in such a way that the recovery rate of one of the new banks is always exactly a NOR b.
This extension is illustrated in Figure 4.

Lemma 1 (Financial NOR Gate). Let X = (N, e, c, α, β) be a financial system and let
a, b ∈ N be banks (not necessarily different). Assume that for all r clearing for X and all
i ∈ N we have ri ∈ {0, 1}. Then there exists an extension X ′ obtained from X by adding
four banks s, t, u, v such that

1. If r is clearing for X, then there exists r′ clearing for X ′ such that r′|N = r.

2. If r′ is clearing for X ′, then r′|N is clearing for X and r′v = r′a NOR r′b.

Here, r′|N is the vector r′ with only the indices from N , i.e., without the indices s, t, u, v.

Proof. Let X ′ result from X by adding the banks and contracts in Figure 4. It is clear
that the construction does not change the solution structure of the sub-system X of X ′

because X is not affected by the recovery rates of the new banks s, t, u, v and the sub-system
consisting of the new banks always has a solution. Hence, solutions of X can be extended
to solutions of X ′, proving statement 1.

If r′ is clearing for X ′, then r′a and r′b can only be 0 or 1 by assumption. If ra = 0 and
rb = 0, then v has assets of 1 and thus a recovery rate of 1. Otherwise, the flow of money
from s is “blocked” before either u or v and v has assets of 0 and thus a recovery rate of 0.
This corresponds exactly to the definition of the NOR operation, proving statement 2.

9

We can now to translate a complete Boolean circuit.

Lemma 2 (Financial Boolean Circuit). Let C be a Boolean circuit with m inputs. For
χ ∈ {0, 1}m write C(χ) for the value of the output of C given values χ of the inputs.

For any α ∈ [0, 1] and β ∈ [0, 1] there exists a financial system X = (N, e, c, α, β) of size
linear in the size of C with distinguished input banks a1, ... , am ∈ N and a distinguished
output bank v ∈ N such that the following hold:

1. For any assignment χ ∈ {0, 1}m there exists a clearing recovery rate vector r for X
such that rai = χi for i = 1, ... ,m.

2. If r is clearing for X, then ri ∈ {0, 1} for any bank i ∈ N .

3. If r is clearing for X, then rv = C(ra1 , ... , ran).

Proof outline (full proof in Appendix A). WLOG we can assume that all gates are NOR
gates. Boolean circuits are acyclic, so we can proceed in topological order, starting at the
inputs and ending at the output. We translate inputs into a copy of the 0-1 system from
Figure 3 and we translate NOR gates by applying Lemma 1 to the part of the system that
has been constructed so far.

5.2 Deciding the Default of an Individual Bank

We now prove hardness of our decision problems. We begin with the second group of decision
problems discussed above, i.e., deciding for a single bank whether it is in default in some or
all solutions. This problem can be stated for any values of α and β, including 1.

We use the following problems for reduction.

Definition 2 (Circuit Problems). Define the following decision problems:

• Circuit Satisfiability (Falsifiability): Given a Boolean circuit, decide if there exists an
assignment of inputs such that the output is 1 (0).

• Circuit Non-Constancy: Given a Boolean circuit, decide if it is true that there are two
assignments of inputs: one that makes the output 1 and one that makes it 0.

It is well-known that Circuit Satisfiability is NP-complete. Circuit Falsifiability is NP-
complete because Circuit Satisfiability is just Falsifiability in a circuit with an additional
NOT gate. Circuit Non-Constancy is NP-complete because we can solve Circuit Satisfiability
by solving Circuit Non-Constancy and evaluating the circuit on a single input.

Theorem 1 (NP-hardness of Deciding the Default of an Individual Bank). The following
problems are NP-hard: Given a financial system X and a bank i in X, decide if

a) Possible Default: there exists r clearing such that ri < 1.

b) Possible Non-Default: there exists r clearing such that ri = 1.

c) Certain Default: for all r clearing we have ri < 1.

d) Certain Non-Default: for all r clearing we have ri = 1.

e) Multiplicity: there exist r and r′ clearing such that ri 6= r′i

Proof. a): Reduction from Circuit Falsifiability. Given an instance C of Circuit Falsifiability,
let X be the financial system resulting from Lemma 2 and let v be the output bank. By
construction, if r is clearing for X and rv < 1, then rv = 0 and (ra1 , ... , ran) is a falsifying

10

assignment. Vice versa, any falsifying assignment χ ∈ {0, 1}n gives rise to a clearing recovery
rate vector r with rai = χi for i ∈ {1, ... , n} and rv = C(χ) = 0 < 1.

b): Reduction from Circuit Satisfiability like for a).
c) and d): these are the complements of b) and a), respectively, and are thus NP-hard

as well.9

e): Reduction from Circuit Non-Constancy like for a). For our particular construction
we know that rv 6= r′v iff rv = 0 and r′v = 1 or vice versa.

Theorem 1 has an important implication for network stress tests: regulators may want to
simulate an array of different scenarios and test for each one if specific banks are at risk of
defaulting. This should take all solutions into account since it is not clear a priori which of
these would be chosen. However, Theorem 1 shows that such a stress test is computationally
infeasible in a general network of debt and CDSs.

5.3 Deciding Existence of a Solution

We can now prove the hardness of deciding if a given financial system has a solution. Recall
that financial systems with α = β = 1 always have a solution, so this decision problem only
makes sense for α < 1 or β < 1.

Theorem 2 (NP-Hardness of Determining Existence). The following problem is NP-hard:
Given a financial system (N, e, c, α, β) with α < 1 or β < 1, decide if it has a clearing
recovery rate vector.

Proof outline (full proof in Appendix A). Reduction from Circuit Satisfiability. Given a
Boolean circuit C, we construct the translation into a financial system as of Lemma 2. On
top of that, we add a copy of the system from Figure 2 (no solution), but with one of the
debt contracts replaced by a CDS on the output bank of the circuit translation.

If now a falsifying assignment is supplied to the input banks, then the output bank
has recovery rate 0, so the “no solution” system is active, and thus no such recovery
rate vector can be clearing. In effect, the only possible clearing recovery rate vectors
correspond to satisfying assignments of the circuit C, where the output bank has recovery
rate 1 and one contract of the “no solution” system drops out, in which case it has a
solution. Thus, determining whether there is a clearing recovery rate vector in this financial
system is equivalent to determining whether there is a satisfying assignment for C, which is
NP-hard.

Another important property of financial systems with CDSs is whether a solution exists
that maximizes the equity, defined as Ei(r) = max(0, ai(r)− li(r)), of each individual bank
i. Such a maximal solution would be preferred by each bank and it would also minimize
the amount of money lost due to default costs. In debt-only systems, the unique solution
that maximizes banks’ recovery rates also maximizes the equities. With CDSs in contrast, a
point-wise equity-maximizing solution may not exist and it is NP-hard to decide if it does.

Corollary 1 (NP-Hardness of Determining Maximality). The following problem is NP-hard:
Given a financial system X = (N, e, c, α, β) that has a solution, decide if there is a solution
that point-wise maximizes the vector of equities (Ei(r))i∈N among all solutions r.

9 Recall that complements of NP-hard problems are NP-hard, where the reduction is by simply in-
terchanging the “Yes” and “No” answers. This is not to be confused with the analogous proposition for
NP-completeness, which would be equivalent to NP=coNP.

11

Proof. Proof by reduction from Circuit Satisfiability. Given is a Boolean circuit. We modify
our construction from Theorem 2 by adding a single “trivial” solution as follows: add a copy
of the system from Figure 3 (two solutions). We will refer to the banks A and C from this
copy of the system in the following. Further add a new “source bank” σ. For each bank i in
our original construction that had any positive external assets ei, add a CDS cAσ,i = ei, and

then set ei to 0. Set eσ :=
∑
i c
A
σ,i so that σ cannot default.

There are two types of solutions in this new system.

1. If rA = 1, none of the CDSs cAσ,i pays anything. Thus, every bank other than C and A
has no assets, so its recovery rate is 0 if it has positive liabilities or 1 if it has zero
liabilities. Thus, there is exactly one solution with rA = 1. In this solution, we have
have EA(r) = δ − 1 > 0 and EC(r) = 1.

2. If rA = 0, then the CDS payments in the contracts cAσ,i equal the external assets banks
had in our original construction in Theorem 2, so the behavior of the system is the
same as there. In particular, a solution with rA = 0 exists iff the Boolean circuit has a
satisfying assignment. In any such solution, we have EA(r) = 0 and EC(r) = δ > 1.

Overall, if the given Boolean circuit has no satisfying assignment, then there is a unique
(and in particular equity-maximizing) solution, namely the one with rA = 1. If the Boolean
circuit has a satisfying assignment, then there are at least two solutions: in the one with
rA = 1, A has higher equity and in the ones with rA = 0, C has higher equity. Thus, no
equity-maximizing solution exists. This completes the reduction.

Theorem 2 and Corollary 1 are again relevant for stress testing. In (Schuldenzucker,
Seuken and Battiston, 2017a), we have argued that when the clearing problem has no
solution or no maximal solution, this can lead to a phenomenon we call default ambiguity,
i.e., a situation where it is impossible to tell which banks are in default. We have argued
that such a situation can lead to a “paralysis” and delay banks’ resolution, which could in
turn exacerbate a financial crisis. Having seen the danger that comes with default ambiguity,
regulators may want to simulate an array of different scenarios and test each of them for
whether there is a (maximal) solution. They could then estimate the probability of default
ambiguity and they would know which scenarios are particularly problematic and should
therefore be prevented at all cost. However, the theorem and corollary show that, due to
computational complexity, such a simulation could not easily be carried out.

6 The Complexity of Approximating a Solution with-
out Default Costs

We know from Proposition 1 that if there are no default costs, then a solution to the clearing
problem always exists. Note that in this section, we consider the corresponding total search
problem. Since there are financial systems where all solutions contain irrational numbers (a
simple example is provided in Appendix B), the best we can hope for is an algorithm that
computes a recovery rate vector that is in some sense approximately clearing.

In this section, we always assume that α = β = 1. Thus, a financial system can be
described by a triple (N, e, c) := (N, e, c, 1, 1).

12

6.1 The ε-FindClearing Search Problem

There are many ways to relax the definition of clearing recovery rate vectors to receive a
concept of an approximate solution. The approach we will use in this section is to relax
the (essentially equivalent) definition of being clearing from Remark 1. For x ∈ R let
[x] := min(1, max(0, x)). For ε ≥ 0 write y = x ± ε to mean that |x − y| ≤ ε if x and y
are scalars and ‖x− y‖ ≤ ε if x and y are vectors, where ‖ · ‖ is the supremum norm. We
also use the notation “±ε” in compound expressions such as [x± ε] to indicate a range of
possible values. This notation formally corresponds to interval arithmetic.

Following the alternative definition of being clearing from Remark 1 for α = β = 1, r is
clearing if ri = [ai(r)li(r)

] for all i for which li(r) > 0. ri is arbitrary if li(r) = 0. We relax this
as follows: for ε ≥ 0 and i ∈ N let

ρεi (r) : [0, 1]
N → 2[0,1]

ρεi (r) :=

{
[ai(r)li(r)

± ε] if li(r) > 0

[0, 1] if li(r) = 0

and let ρε : [0, 1]N → 2[0,1]
N

be defined as ρε(r) :=×i∈N ρ
ε
i (r).

Definition 3 (Approximately Clearing Recovery Rate Vector). Fix a financial system
without default costs and let ε ≥ 0. A recovery rate vector r is called ε-approximately
clearing or an ε-solution if it is a fixed point of the set-valued function ρε, i.e., if r ∈ ρε(r).
For clarity, we refer to solutions that are not approximate as exact solutions. Note that for
ε = 0 we have ρε = ρ, so 0-solutions are the same thing as exact solutions.

Our definition of an approximate solution has many desirable properties from an economic
and technical point of view. We provide a discussion in Appendix C. Note in particular

that if r is an ε-solution and li(r) > 0, then ri = [ai(r)li(r)
]± ε, though the converse does not

necessarily hold.
It is easy to see that for any ε > 0, there always exists an ε-solution of finite length.

To guarantee that there is also an ε-solution of polynomial length, we make an additional
assumption that we call non-degeneracy.10 We can then state our search problem.

Definition 4 (Non-degenerate Financial System). A financial system without default costs
X = (N, e, c) is called non-degenerate if each bank that writes a CDS also writes a debt
contract or has strictly positive external assets.

Definition 5 (ε-FindClearing Problem). For any parameter ε > 0, ε-FindClearing is
the following total search problem: given a non-degenerate financial system without default
costs, find an ε-solution.

The following lemma establishes that under the assumption of non-degeneracy, sufficiently
“short” approximate solutions always exist in the vicinity of exact solutions, thus making
ε-FindClearing a well-posed search problem. The converse is not in general true: there can
be additional approximate solutions that are not close to any exact solution. While this is
unfortunate, it appears to be unavoidable for an approximate solution concept; for example,
the well established concept of approximate Nash equilibrium also has this property.

Lemma 3 (ε-FindClearing is Well-posed and in PPAD).

10It is an open question whether or not ε-solutions of polynomial length are also guaranteed to exist when
this assumption is not made.

13

1. If X = (N, e, c) is a non-degenerate financial system without default costs and ε > 0,
then there exists an ε-solution of length polynomial in the length of X and the length
of ε.

2. For any ε > 0, the problem ε-FindClearing is in PPAD.

Proof Outline (full proof in Appendix D). We define a (not set-valued) function G such that
any ε-approximate fixed point of G gives rise to an ε-solution of X. We prove that since X
is non-degenerate, G has a polynomial Lipschitz constant. We then round the exact fixed
point of G to a grid dependent on the Lipschitz constant to receive an approximate fixed
point and thus an approximate solution.

Our main contribution in this section is the proof that ε-FindClearing is PPAD-hard,
and thus PPAD-complete, for a sufficiently small constant ε.

Theorem 3. There exists an ε > 0 such that the ε-FindClearing problem is PPAD-hard.

The theorem immediately implies:

Corollary 2. There is no polynomial-time approximation scheme that computes an ε-
solution for a given financial system without default costs and a given ε, unless P = PPAD.

Towards a proof of the theorem, we proceed in two steps: we first introduce a variant
of Rubinstein’s (2015) generalized circuit framework and we show that the problem of
finding an approximate solution of a generalized circuit in this framework is still well-posed
and PPAD-complete (Section 6.2). We then reduce this problem to ε-FindClearing
(Section 6.3).

6.2 Generalized Circuits

A generalized circuit consists of a collection of interconnected arithmetic or Boolean gates.
In contrast to regular arithmetic or Boolean circuits, generalized circuits may contain cycles,
making the problem of finding a solution (or stable state) of the circuit a non-trivial fixed
point problem. Rubinstein (2015) introduced a framework for generalized circuits that is
already well-suited for our purposes. To make our reduction to financial systems as simple
as possible, we slightly adapt Rubinstein’s definition by assuming a reduced set of gates (cf.
the proof of Lemma 5 below for a detailed comparison).

Definition 6 (Generalized Circuit and Approximate Solution). A generalized circuit is
a collection of nodes and gates, where each node is labeled input of any number of gates
(including zero) and output of at most one gate. Inputs to the same gate are distinguishable
from each other. Each gate has one of the following types:

• For each ζ ∈ [0, 1] the constant gate Cζ with no inputs and one output.

• Arithmetic gates: addition and subtraction gates, denoted C+ and C−, with two inputs
and one output; for each ζ > 0 the scale by ζ gate C×ζ with one input and one output.

• For each ζ ∈ (0, 1) the compare to ζ gate C>ζ with one input and one output.

• Boolean gates: C¬ with one input and one output and C∨ with two inputs and one
output.

The length of a generalized circuit is given by the number of nodes, the size of the mapping
from nodes to inputs and outputs of gates, and the length of any ζ values involved.

14

Figure 5 Conditions to hold at the different gates in an ε-solution of a generalized circuit

g = Cζ ⇒ x[v] = ζ ± ε
g = C+ ⇒ x[v] = [x[a1] + x[a2]]± ε
g = C− ⇒ x[v] = [x[a1]− x[a2]]± ε
g = C×ζ ⇒ x[v] = [ζ · x[a1]]± (1 + ζ) ε

g = C>ζ ⇒ x[a1] ≤ ζ − ε ⇒ x[v] = 0± ε
x[a1] ≥ ζ + ε ⇒ x[v] = 1± ε

g = C¬ ⇒ x[a1] = 0± ε ⇒ x[v] = 1± ε
x[a1] = 1± ε ⇒ x[v] = 0± ε

g = C∨ ⇒ x[a1] = 0± ε and x[a2] = 0± ε ⇒ x[v] = 0± ε
x[a1] = 1± ε or x[a2] = 1± ε ⇒ x[v] = 1± ε

If ε ≥ 0 and C is a generalized circuit, then an ε-approximate solution (or ε-solution) to
C is a mapping that assigns to each node v of C a value x[v] ∈ [0, 1] such that at any gate
of type g with inputs a1, ... , al and output v the respective condition from Figure 5 holds.

Definition 7 (ε-GCircuit Problem). For any parameter ε > 0, ε-GCircuit is the following
total search problem: given a generalized circuit, find an ε-solution.

Note how the comparison gadget C>ζ is brittle: its value is arbitrary if x[a1] is close to
ζ. This property is crucial for our second step of describing generalized circuits via financial
systems because the function ai

li
that ultimately defines an approximate solution is always

continuous while a non-brittle comparison gadget, yielding low values for x[a1] < ζ and
high values for x[a1] ≥ ζ, would correspond to a discontinuous function. We further use
approximate Boolean values 0± ε and 1± ε instead of exact Boolean values 0 and 1 since the
latter are not attainable if there can be ε errors at each bank. Note how chains of Boolean
gadgets do not accumulate errors, but chains of arithmetic gadgets do.

It is well known that ε-GCircuit is well-posed and in PPAD. We provide a sim-
ple lemma for our variant of ε-GCircuit for completeness. PPAD-hardness, and thus
PPAD-completeness, of the ε-GCircuit problem for constant ε follows by reduction from
Rubinstein’s variant. Both proofs can be found in Appendix E.

Lemma 4 (ε-GCircuit is Well-posed and in PPAD).

1. If C is a generalized circuit and ε > 0, then there exists an ε-solution for C of length
polynomial in the length of C and the length of ε.

2. For any ε > 0, the ε-GCircuit problem is in PPAD.

Lemma 5. There exists an ε > 0 such that the ε-GCircuit problem is PPAD-hard.

6.3 Reduction from Generalized Circuits to Financial Systems

We now reduce the GCircuit problem to the FindClearing problem. To do so, we
construct financial system gadgets, i.e., fragments of financial systems where the recovery
rate of an output bank is given (approximately) by a function of certain input banks.

15

Figure 6 Constant Gadget: extension of an existing financial system with output bank v
by new banks s, t and contracts such that rv = ζ ± ε.

s v t
ζ 12 0

Definition 8 (Financial System Gadget). A financial system gadget G is a polynomial-time
computable function mapping a financial system without default costs X = (N, e, c) to a
new financial system X ′ = (N ′, e′, c′) in the following way:

• Given are X, a set of input banks a1, ... , al ∈ N where l depends on the gadget, and an
output bank v ∈ N such that v has no assets or liabilities in X, i.e., ev = ckv,j = ckj,v = 0
for all j ∈ N and k ∈ N ∪ {∅}.

• X ′ consists of X together with some new banks and contracts.

• For any ε and any ε-solution r′ of X ′, the restriction r := r′|N is an ε-solution for X.

• For any ε and any ε-solution r of X, there is an ε-solution r′ of X ′ such that r′i = ri
for all i ∈ N \ {v}.

In addition to these properties, gadgets typically establish some relationship between the
recovery rates of the input and output banks. We usually label input banks a and b instead
of a1 and a2 for the sake of readability.

We will now describe our gadgets: addition gadgets, scaling and comparison gadgets,
and Boolean gadgets. Some of the gadgets, shown in Figures 6–9, are fundamental while the
others are defined as combinations of the fundamental ones. We use our visual representation
for financial systems where we draw the (existing) input and output banks as dotted circles
and the new banks as solid circles. Our gadgets add assets and liabilities to the output bank
and CDS references to the input banks. This ensures that gadgets only restrict the recovery
rate of the output bank based on the recovery rates of the input banks, but not vice versa,
and gadgets applied to different output banks do not conflict. In a final step, we iteratively
apply our gadgets starting from a financial system with no contracts to receive a financial
system that corresponds to a given generalized circuit. Our gadgets will be accurate up to
an error of 3ε. We will later compensate for the factor 3 by choosing ε by factor 3 smaller.
All gadgets lead to non-degenerate financial systems.

6.3.1 Addition Gadgets

The simplest gadget establishes a fixed recovery rate at the output bank:

Lemma 6 (Constant Gadget). Let ζ ∈ [0, 1]. There is a financial system gadget with no
input banks and with output bank v such that if r is an ε-solution, then rv = ζ ± ε.

Proof. Consider the gadget in Figure 6. We have as(r)
ls(r)

≥ 2 ≥ 1 + ε. It is easy to see

that this implies that rs = 1 in any ε-solution. Thus, s pays in full and av(r) = ζ and

lv(r) = 1 ≥ av(r), so in an ε-solution rv =
av(r)
lv(r)

± ε = ζ ± ε.

An important building block for the following constructions is a gadget that “inverts”
the recovery rate of a bank.

16

Figure 7 Inverter Gadget: extension of an existing financial system with input bank a and
output bank v by new banks s, t and contracts such that rv = 1− ra ± ε.

s v t
1

a

12 0

Figure 8 Sum Gadget: extension of an existing financial system with input banks a and b
and output bank v by new banks s, t and contracts that translate ra + rb.

s v t
1

a’

1

b’

14 0

Lemma 7 (Inverter Gadget). There is a financial system gadget with input bank a and
output bank v such that if r is an ε-solution, then rv = 1− ra ± ε.

Proof. Consider the gadget in Figure 7. Since lv(r) = 1 we have in any ε-solution that
rv = av(r)± ε and av(r) = 1− ra.

We can now define the sum and difference gadgets:

Lemma 8 (Sum Gadget). There is a financial system gadget with input banks a and b and
output bank v such that if r is an ε-solution, then rv = [ra + rb]± 3ε.

Proof. Apply inverter gadgets (Lemma 7) to both a and b and call the output banks a′ and
b′, respectively. Now consider the gadget in Figure 8. We have

rv = [1− ra′ + 1− rb′]± ε
= [ra + rb ± 2ε]± ε
= [ra + rb]± 3ε.

Lemma 9 (Difference Gadget). There is a financial system gadget with input banks a and
b and output bank v such that if r is an ε-solution, then rv = [ra − rb]± 3ε.

Proof. Apply an inverter gadget (Lemma 7) to a and call the output bank a′. Apply the
gadget in Figure 8 to a′ and b′ := b and call the output bank u. From the proof of the
previous lemma we know that

ru = [1− ra + rb]± 2ε

where the error is by one ε lower because we used one inverter gadget less. Now apply an
inverter to u and call the output bank v. To show that rv is as desired, we distinguish two
cases:

17

Figure 9 Amplifier Gadget: extension of an existing financial system with input bank a
and output bank v by new banks s, t, u and contracts that translate the function f from
Lemma 10. Let µ = 2(γ + δ).

s u t
γ

a

1

v
δ 1

µ 0 0

• If ra ≤ rb, then 1− ra + rb ≥ 1, so ru = 1± 2ε and thus rv = 1− ru ± ε = 0± 3ε =
[ra − rb]± 3ε as required.

• If ra ≥ rb, then 1− ra + rb ≤ 1, so ru = 1− ra + rb ± 2ε and thus rv = 1− ru ± ε =
ra − rb ± 3ε = [ra − rb]± 3ε as required.

6.3.2 Scaling and Comparison

Towards the scaling and comparison gadgets, we introduce a versatile tool that can be used
to re-scale and shift recovery rates.

Lemma 10 (Amplifier Gadget). Let K and L be real numbers such that K < L, K < 1,
and L > 0. Note that K ≤ 0 and L ≥ 1 are allowed. Let

f : [0, 1]→ [0, 1]

f(ra) :=

[
1

L−K
ra −

K

L−K

]
.

Note that f is monotonically increasing with f(K) = 0 and f(L) = 1.
There is a financial system gadget with input bank a and output bank v such that if r is

an ε-solution, then rv = f(ra)± (δ+1)ε where δ = 1−K
L−K . The construction can be performed

in time polynomial in the lengths of L and K.

Proof. Consider the gadget in Figure 9 with

γ :=
1

1−K

δ :=
1−K
L−K

.

Let r be an ε-solution. We have

ru = [γ(1− ra)]± ε
rv = [δ(1− ru)]± ε.

18

By replacing the first relation into the second one, we receive

rv ∈ [δ (1− ([γ(1− ra)]± ε))]± ε
⊆ [δ (1− [γ(1− ra)])]± (δ + 1) ε

= [δ (1− (γ(1− ra)))]± (δ + 1) ε

= [δ − δγ + δγra]± (δ + 1) ε =

[
− K

L−K
+

1

L−K
ra

]
± (δ + 1) ε

where the third line is because [δ(1− z)] = [δ(1− [z])] for any z ≥ 0 and the last line is by
simple algebra. Thus, rv is as desired.

We receive a scaling gadget by choosing K = 0:

Corollary 3 (Scale by Constant Gadget). Let ζ > 0. There is a financial system gadget
with input bank a and output bank v such that if r is an ε-solution, then rv = [ζra]± (1+ ζ)ε.
The construction can be performed in time polynomial in the length of ζ.

Proof. Use an amplifier gadget (Lemma 10) with K = 0 and L = 1
ζ . Then f(ra) = [ζra]

and δ = ζ.

We receive a gadget that acts like the brittle comparison gate C>ζ by choosing K and
L closely together around a central point ζ. The gadget is less “brittle” the closer K and
L are together, but this also increases the value δ and thus the output error of the gadget.
To compensate for this, we first introduce a gadget that converts a wide range of values to
approximate Boolean values with threshold 3ε.

Corollary 4 (Reset Gadget). There is a financial system gadget with input bank a and
output bank v such that if r is an ε-solution, then if ra ≤ 1

4 , then rv = 0± 3ε and if ra ≥ 3
4 ,

then rv = 1± 3ε.

Proof. Apply the amplifier gadget (Lemma 10) with K = 1
4 and L = 3

4 . We have δ + 1 =
5
2 < 3. If ra ≤ 1

4 , then f(ra) = 0, so rv = f(ra)± (1+ δ)ε = 1± 3ε. Likewise for ra ≥ 3
4 .

Corollary 5 (Brittle Comparison to Constant Gadget). Let ζ ∈ [0, 1]. There is a financial
system gadget with input bank a and output bank v such that if ε ≤ 1/18 and r is an
ε-solution, then if ra ≤ ζ − 3ε, then rv = 0± 3ε and if ra ≥ ζ + 3ε, then rv = 1± 3ε. The
construction can be performed in time polynomial in the length of ζ.

Proof. We apply two constructions involving the amplifier gadget (Lemma 10): first we
apply an amplifier to a as an input bank with K := ζ − 3ε and L := ζ + 3ε. Call the output
bank u. We have δ = 1−K

L−K = 1−ζ+3ε
6ε ≤ 1+3ε

6ε = 1
6ε +

1
2 . So this gadget has output error

(δ + 1)ε ≤ 1
6 + 1

2ε+ ε ≤ 1
4 . Thus, if ra ≤ K, then ru ≤ 1

4 and if ra ≥ L, then ru ≥ 3
4 . Now

apply a reset gadget (Corollary 4) to u as the input bank to receive the desired lower output
error of 3ε.

6.3.3 Boolean Gadgets

We can re-use the addition gadgets from above to build Boolean gadgets, translating OR
into “+” and NOT into “1− x” (inversion). We use the reset gadget to prevent errors from
propagating.

Lemma 11 (Boolean Gadgets). There are financial system gadgets with input banks a and
b and output bank v such that if ε ≤ 1/36 and r is an ε-solution, then

19

1. (OR) If ra = 0± 3ε and rb = 0± 3ε, then rv = 0± 3ε.
If ra = 1± 3ε or rb = 1± 3ε, then rv = 1± 3ε.

2. (NOT) If ra = 0± 3ε, then rv = 1± 3ε.
If ra = 1± 3ε, then rv = 0± 3ε.

Proof. 1. Apply a sum gadget (Lemma 8) to a and b and call the output bank u. Now apply
a reset gadget (Corollary 4) to u and call the output bank v. We know that ru = [ra+rb]±3ε.
If ra ≥ 1 − 3ε or rb ≥ 1 − 3ε, then ru ≥ 1 − 6ε ≥ 3

4 , so rv = 1 ± 3ε. If ra, rb ≤ 3ε, then
ru ≤ 9ε ≤ 1

4 , so rv = 0± 3ε.
2. Apply similarly an inverter gadget (Lemma 7) and then a reset gadget. It is easy to

show that the construction behaves as desired.

6.3.4 Completing the PPAD-hardness Proof

We combine our gadgets to model generalized circuits, thus reducing ε-GCircuit to ε′-
FindClearing (with 0 < ε′ < ε) and proving PPAD-hardness of ε-FindClearing:

Proof of Theorem 3. Let ε > 0 be arbitrary. We reduce ε-GCircuit to ε′-FindClearing
where ε′ := ε

3 . Assume that we are given a generalized circuit C with n nodes and m gates.
Construct a financial system via the following algorithm.

• Start with a system X0 consisting of n banks, 0 external assets for each bank, and no
contracts. Identify the n banks with the nodes of C.

• Consider the gates of C in any order. For each t = 1, ... ,m do the following:

– Consider the t-th gate of C. Let g be the type, a1, ... , al the inputs, and v the
output of this gate.

– Apply the gadget from above corresponding to g to Xt−1 with input banks
a1, ... , al and output bank v. Call the resulting financial system Xt.

• Let X := Xm.

For t = 0, ... ,m let Ct be C restricted to the first t gates. We show by induction on t that
the ε′-solutions of Xt correspond to ε-solutions of Ct. For t = 0, the statement is clear.
For t > 0, and assuming the statement for t − 1, it follows from the fact that the bank
corresponding to the output of the t-th gate has no assets or liabilities in Xt−1 and then
from the definition of a financial system gadget and our above lemmas. By definition of the
gadgets, each Xt, and thus X, is non-degenerate.

Remark 2. The intermediate systems Xt in the above construction may violate our assump-
tion that any bank that is a reference entity in a CDS must be a writer of some debt contract
(cf. Section 3). This happens when gadgets refer to a reference entity that is an output
bank of another gadget that has not yet been executed. However, since our proof does not
rely on this assumption, not having it here does not lead to a problem. Alternatively, one
could temporarily replace the output banks of gadgets that have not yet been executed by
a financial sub-system that fulfills all our assumptions and in which one of the banks can
attain any recovery rate in some solution. Such a financial system arises, for example, if we
choose δ = 1 in Figure 3.

20

6.4 Discussion: Origin of the Computational Complexity

Given the results from this section, one may wonder why exactly the computational com-
plexity arises in financial networks with CDSs and why it did not arise in debt-only systems.
Understanding this is important to devise policies that aim to reduce complexity in the
financial system in the future. In general financial systems with credit default swaps, many
possible origins of computational complexity come to mind:

a) Banks’ liabilities may form a cycle, creating “feedback loops” where banks are highly
sensitive to changes in the assets of the other banks. These cycles may even be
interlinked when banks have liabilities to more than one creditor, where the principle
of proportionality leads to a strong coupling between a cycle and the rest of the system.

b) In the definition of approximately clearing recovery rates, there are two sources of
non-linearities:

• In CDSs, having both counterparty risk (i.e., the dependence of banks on the
recovery rates of their debtors) and fundamental risk (i.e., the dependence of
CDS holders and writers on the recovery rates of reference entities) introduces
terms of form rj(1− rk) into the definition of the assets ai of a bank.

• The liabilities of CDS writers depend on the recovery rates of other banks, which
introduces terms of form 1

1−rk into the function ai
li
.

c) The complexity could come from determining which banks are in default while com-
puting the values of recovery rates could be easy.

We show that of these points, a) and b) cannot alone be the origin of the complexity
while we answer the last point in the affirmative. Note that all our gadgets, and thus the
financial systems we use to show PPAD-hardness, share three properties that make them
particularly simple financial systems:

1. Acyclic Liabilities: The graph of writer-holder relationships of contracts is acyclic.

2. Outside Insurers: CDS writers are highly capitalized banks: their external assets are
significantly (by factor 2 ≥ 1 + ε, for any relevant ε) higher than the total notional of
their contracts written and thus, they have recovery rate 1 in any ε-solution.

3. No Counterparty Risk: Contracts are either written by a highly capitalized source
bank s or held by a sink bank t with zero liabilities.11

The first property implies that cycles of liabilities cannot be the reason for PPAD-hardness.
The second property implies that we never have both counterparty and fundamental risk
at the same time in our construction, so banks’ assets never contain nonlinear terms. It
further implies that banks that are at the risk of defaulting do not write CDSs and thus
their liabilities are constant, so ai

li
never contains terms of form 1

1−rk . The third property
implies that proportionality is not relevant.

To answer the remaining question if it is easier to compute the set of defaulting banks
than to compute approximate recovery rates, we introduce the notion of a default set as the
set of banks that do not pay their liabilities in full at a given recovery rate vector:

Definition 9 (Default Set). If r is a recovery rate vector, define the default set of r as

D(r) := {i ∈ N | ri < 1} .
11 To ease presentation, we assume in the following that all source banks s and all sink banks t, respectively,

are the same. This does not change the solutions for the other banks.

21

The following theorem and corollary show that in the setting of our construction, it is
easy to determine recovery rates once the default set is known, so hardness of the problem
must stem from having to compute default sets. We receive as an additional result that our
construction in fact has an exact solution of polynomial length (but finding it is PPAD-hard).

Theorem 4. Given ε ≥ 0, a financial system without default costs with outside insurers,
and the default set of any ε-solution, one can compute an ε-solution in time polynomial in
the length of the financial system.

Proof. Let ε ≥ 0. Let X = (N, e, c) be a financial system with outside insurers (with respect
to ε) and let M ⊆ N be the set of banks i for which ei < (1 + ε)(

∑
j c
∅
i,j +

∑
j,k c

k
i,j). By

assumption, banks inM do not write CDSs, so li(r) =: li is a constant for all i ∈M . Assume
WLOG li > 0 for all i ∈M . CDSs held by banks in M are further only written by banks
outside M , so that for the assets of a bank i ∈M we have in any ε-solution r that

ai(r) = ei +
∑

j∈N\M

c∅j,i +
∑
j∈M

c∅j,irj +
∑

j∈N\M
k∈M

ckj,i(1− rk)

is a linear term in r. The expression does not contain any rj with j ∈ N \M because we
have rj = 1 for these j.

Let now D ⊆ N and consider the following linear program with variables rM := (ri)i∈M :

min ε̃ s.t. (3)

ε̃ ≥ 0

For all i ∈M : 0 ≤ ri ≤ 1

For all i ∈M \D :

ai(rM)

li
≥ 1− ε̃

ri = 1

For all i ∈M ∩D :
ai(rM)

li
≤ 1 + ε̃

ri =
ai(rM)

li
± ε̃

One checks that any ε-solution with default set D is a feasible solution of the LP with
objective value ε̃ ≤ ε. Vice versa, any such solution to the LP gives rise to an ε-solution of
the financial system by setting the recovery rates of banks outside M to 1. The default set
of this ε-solution may not be D, though.

Now, if D if the default set of some ε-solution, then the LP for D must be feasible with
optimal value ≤ ε. Since the LP has polynomial size in the financial system, we can compute
in polynomial time an optimal solution r to the LP via the ellipsoid method. By optimality,
r must have value ≤ ε and thus be an ε-solution.

Corollary 6. There exists an ε > 0 such that the following problem is PPAD-complete:
given a nondegenerate financial system without default costs, find a set of banks that is the
default set of some ε-solution. The problem remains PPAD-complete when restricted to
financial systems with acyclic liabilities, outside insurers, and no counterparty risk.

Proof. The statement follows immediately from Theorem 4 and the fact that our construction
in the PPAD-hardness proof had the mentioned properties.

22

Corollary 7. Any financial system without default costs with outside insurers (with respect
to ε = 0) has an exact solution of polynomial length; finding one is PPAD-hard.

Proof. The existence statement follows from Theorem 4 for ε = 0 when applied to the
default set of any exact solution. PPAD-hardness is clear.

Coming back to our discussion on the origin of the complexity, we highlight the unique
property of CDSs that banks can have an “inverse relationship” or short position on each
other: the holder of a CDS profits from the ill-being of the reference entity, which allows us
to implement operations such as logical negation. This effect is only present when CDSs are
held by banks in a naked fashion, i.e., without holding a corresponding debt contract from
the reference entity.

7 Conclusion

In this paper, we have studied the problem of computing clearing recovery rates in financial
networks with debt and credit default swap (CDS) contracts. We have shown that the
addition of CDSs makes many important decision problems NP-hard. We have further
shown that the problem of computing an approximately clearing vector of recovery rates is
PPAD-complete with CDSs even when the desired approximation quality is kept constant.
Consequently, no polynomial-time approximation scheme exists unless P=PPAD. Regarding
the origin of the additional complexity, we have shown that already computing the set of
banks that default in an approximate solution is PPAD-complete.

Our results reveal two kinds of systemic risk in today’s financial networks that have gone
unnoticed so far: first, in the event of a financial crisis, regulators might not even be able to
tell which banks are in default. This could delay stabilizing measures, undermine trust in
the market and thus exacerbate the crisis. Second, the risk of such a crisis happening is
higher when regulators cannot conduct reliable stress tests to understand which banks are
in danger of defaulting (and take targeted measures to protect them or isolate them from
the rest of the system). Computational complexity is especially problematic in the latter
case because stress tests are often conducted via Monte Carlo simulations and regulators
will further want to conduct an array of them for different economic scenarios.

Our results can also be viewed from another, more positive angle: it is intuitive that
derivatives make the financial system “more complex”. We have been able to make this
statement precise in terms of computational complexity. Over the past ten years, researchers
have sought to understand and quantify complexity in financial networks (Battiston et al.,
2016b). In this paper, we have illustrated that besides the theory of dynamic systems and
spectral graph theory, computational complexity is one of the ways by which this goal can
be achieved. Our results tell us in a specific, precisely defined way in what sense financial
systems with CDSs are complex: understanding the interactions between banks in financial
systems with CDSs is at least as challenging as understanding the structure of Boolean
circuits, as witnessed by the NP-complete Circuit Satisfiability and the PPAD-complete
End of the Line problems.

Our analysis in Section 6.4 shows that even very simple classes of financial systems can
exhibit high computational complexity as long as banks are allowed to hold CDSs in a naked
fashion, i.e., without also holding a corresponding debt contract from the reference entity.
Note that all our gadgets use naked CDSs, and they also seem to require them. Given this,
future work should investigate whether financial networks in which naked CDSs are banned
admit a polynomial-time algorithm for the clearing problem, similar to debt-only networks.

23

Another important task for future research is to find algorithms for general financial networks
with CDSs that may not have polynomial worst-case running time, but are fast in practice.
These algorithms could work by successively updating the set of defaulting banks in a
systematic fashion. All algorithms for realistic financial systems must in addition be able to
deal with non-linearities in the function ai

li
.

A Proofs from Section 5

Proof of Lemma 2. WLOG let C consist of NOR gates only. We model a Boolean circuit as
a directed acyclic graph with two types of nodes: Input nodes have no predecessors. They
encode inputs. There are exactly m input nodes. NOR nodes have two predecessors. They
encode NOR gates. We assume some ordering on the nodes to identify different inputs.

In the following, we construct a financial system that encodes the circuit C. All nodes of
the circuit have a corresponding bank in the financial system (that uses the same label). We
also add other banks that do not correspond to nodes in the circuit. For technical reasons,
we do not consider a special output node. Instead, we replace property 3 by the following,
stronger property:

(3a) Let k be any node in the circuit. For an assignment χ ∈ {0, 1}m let Ck(χ) be the
value of node k given inputs χ. If r is clearing for X, then rk = C(ra1 , ... , ram).

We prove the theorem by induction on the number of nodes in the circuit. If there are
no nodes, then the financial system with no banks has the required properties. So assume
that there is at least one node.

Since the graph is acyclic, there is at least one node k with no successors. Let C ′ be the
circuit without k. By induction hypothesis, there is a financial system X ′ that encodes C ′

in the sense of this theorem. We distinguish two cases based on the type of the node k:
Case 1: k is an Input node. Then k has no predecessors. Let X be the disjoint union of

X ′ and a copy of the 0-1 system from Figure 3. Identify k with bank A in Figure 2. Let the
input banks of X ′ be the input banks of X together with k. Since the two financial systems
X ′ and the copy of Figure 2 do not interact, the solutions of the compound system X are
the unions of the solutions of the two components, i.e.,

{(r, 0, ...) | r clearing for X ′} ∪ {(r, 1, ...) | r clearing for X ′}

where “...” marks fixed, but unimportant values for the three new banks other than k. By
induction hypothesis, all clearing recovery rates are 0 or 1, so property 2 holds and, since
both 0 and 1 for the input k occur, also property 1 holds. Towards property 3a, let j be
a node of C and let r be clearing. If j = k, then j is an input, so rj = Cj(ra1 , ... , ram)
trivially. If j 6= k, then rj = Cj(ra1 , ... , ram) by induction hypothesis.

Case 2: k is a NOR node. Then k has two predecessors a and b in C ′. Let X result
by applying Lemma 1 to X ′, a, and b. This is allowed since by induction hypothesis, any
clearing recovery rates of X ′ are 0 or 1. Identify k with bank v in the lemma. Let the input
banks of X be the input banks of X ′. The solutions of X are

{(r, ra NOR rb, ...) | r clearing for X ′} .

This implies that property 2 holds and property 1 holds by induction hypothesis because the
input banks of X are the same as those of X ′. Property 3a holds by induction hypothesis
and Lemma 1.

The construction adds exactly four banks in each step and there are as many steps as
there are gates plus inputs, thus the size of X is linear in the size of C.

24

Figure 10 Financial System without default costs where the unique solution is irrational

B C
1

A

21

1 0

0

Proof of Theorem 2. Reduction from Circuit Satisfiability. Given an instance C of Circuit
Satisfiability, let X ′ result by application of Lemma 2 to C and let v be the output bank.
Let X ′′ be the system that has no solution, corresponding to Figure 2. There is a debt
contract from B to A. Let X be the union of X ′ and X ′′ where this debt contract has been
replaced by a CDS with reference entity v and the same notional. We claim that X has a
solution iff C has a satisfying assignment.

Like in the proof of Theorem 1, the solutions r of the X ′ component of X correspond
to assignments (ra1 , ... , ram) and output values rv = C(ra1 , ... , ram) of C. To see which of
these extend to solutions for the whole of X, we distinguish two cases:

Case 1: rv = 0. Then the CDS from B to A in the X ′′ component of X gives rise to
a liability equal to its full notional and thus solutions of this component that extend r
correspond to solutions of X ′′, which do not exist. So no extension of r can be a solution
for X.

Case 2: rv = 1. Then the CDS from B to A in the X ′′ component of X gives rise to a
liability of 0. One now easily checks that rA = eA, rB = 1, and rC = rD = 1 extend r to a
solution on the whole of X.

Thus, the solutions of X correspond to the satisfying assignments (ra1 , ... , ram) and
output values rv = C(ra1 , ... , ram) = 1 of C.

B Irrational Solutions

Example 1 (Irrational Solutions). Figure 10 shows a financial system the unique solution of
which is irrational. To see this, note that by the contract structure r is clearing iff

rA =
1

2
rB , rB =

1

2− rA
,

and rC is left unconstrained. One easily verifies that the unique solution in [0, 1]2 to this
system of equations is given by

rA = 2−
√
2, rB = 1− 1√

2
.

C Properties of Approximate Solutions

Our definition of an approximate solution is well motivated from an economic point of view:
assume that a bank A holds a debt contract of notional γ from bank B as well as a CDS
on B from a highly capitalized bank C with the same notional. This contract pattern is
called a covered CDS and it was the original use case CDSs were designed for: the CDS

25

insures the debt contract. While nowadays, a large part of the CDSs are traded naked (i.e.,
they do not have this property), the covered case serves as a benchmark to which extent our
solution concept is natural.

We describe the effect of ε errors in recovery rates on the three banks. If the insurer
C is highly capitalized (its assets are greater than its liabilities by a factor 1 + ε), then C
never defaults (rC = 1) and the assets of A are

γrB + γ(1− rB)rC = γ.

That is, the covered CDS acts as a “full” insurance that eliminates A’s dependence on B.
This property is not affected by ε errors in the recovery rates of any bank. On the other
hand, the writer C of the CDS might incur higher or lower liabilities due to errors in rB , but
this difference is bounded by εγ. Finally, the recovery rate of B might be up to ε lower or

higher than aB(r)
lB(r) . If it is lower, then B may keep up to εγ of its assets even though it is in

default. If it is higher however, then B must make up to εγ in payments from money it does
not have. This money would have to come from an external entity such as a government
institution or the clearing mechanism itself. This is why clearing mechanisms should seek
ε-solutions where ε is small compared to the inverse notionals in the system.

The following elementary properties serve as an indication that our definition of an
approximate solution is also natural from a technical point of view. They are all easy to
validate.

Proposition 2 (Natural Properties of Approximate Solutions). Fix a financial system
without default costs.

1. Any r is a 1-solution. r is a 0-solution iff it is an exact solution.

2. If ε ≤ ε′, then any ε-solution is also an ε′-solution.

3. r is an ε-solution iff r is an ε′-solution for all ε′ > ε.

4. Given r and ε, one can check in polynomial time if r is an ε-solution.

In prior work (Schuldenzucker, Seuken and Battiston, 2017a), we considered a simpler and
weaker approximate solution concept. Specifically, we called r and ε-solution iff F (r) = r±ε.
We then described an algorithm that computes such a weak ε-solution in a restricted case.
It is easy to see that our algorithm from (Schuldenzucker, Seuken and Battiston, 2017a) in
fact computes an ε-solution as defined in this paper and that our proof from this paper can
be modified to show that already finding a weak ε-solution is PPAD-hard.

D Proofs from Section 6.1

The following lemma lets us express ε-FindClearing as the problem of finding an approxi-
mate fixed point of a certain Lipschitz continuous function. Then Lemma 3 follows using
standard techniques.

Lemma 12. Let X = (N, e, c) be a non-degenerate financial system without default costs
and let ε > 0. Define the function

G : [0, 1 + ε]N → [0, 1 + ε]N

Gi(s) :=

{
[ai([s])li([s])

]
1+ε

if li([s]) > 0

1 + ε if li([s]) = 0

where [x]
1+ε

:= min(1 + ε, max(0, x)) and [s] := ([s1], ... , [sn]). Then the following hold:

26

1. G is Lipschitz continuous with a Lipschitz constant polynomial-time computable from
X and ε.

2. If s is an ε-approximate fixed point of G, then [s] is an ε-solution of X.

Proof. Part 1: It is sufficient to show that each Gi has an appropriate Lipschitz constant.
So let i ∈ N . By non-degeneracy, bank i must fall into one of three cases: it either writes
no contracts at all, or writes a debt contract, or has positive external assets. If i writes no
contracts, then Gi is constant 1 + ε.

If i writes a debt contract, then li([s]) > 0 for all s, so

Gi(s) =

[
ai([s])

li([s])

]1+ε
=

(
[·]1+ε ◦ ai

li
◦ [·]

)
(s).

The functions [·]1+ε and [·] are Lipschitz with constant 1. For ai
li
, we find a bound on the

partial derivatives. We have

∂ aili
∂rk

=

∂ai
∂rk

li − ai ∂li∂rk

l2i

=
(lk,i −

∑
j rjc

k
j,i) · li + ai ·

∑
j c
k
i,j

l2i
.

where the second line is easily seen by expanding ai and li. The numerator is bounded from
above in absolute value by

N i
k :=

c∅k,i +∑
j

cjk,i

 ·
∑

j

c∅i,j +
∑
j,l

cli,j

+

ei +∑
j

c∅j,i +
∑
j,l

clj,i

 ·∑
j

ckj,i

and the denominator is bounded from below by Di := (
∑
j c
∅
i,j)

2. Thus, the partial derivative

is bounded by
Nik
Di and this bound is polynomial in X.

If i has positive external assets, then let Li := {s | li([s]) > ei}. For s /∈ Li, we have
Gi(s) = 1 + ε and further Gi(s) → 1 + ε as li([s]) → ei. On Li, one receives a Lipschitz

constant for the restriction of [ai([s])li([s])
]
1+ε

to Li by applying the same reasoning as above

with Di := e2i . Thus, Gi is the continuous union of two Lipschitz continuous functions and
thus itself Lipschitz with the constant being the maximum of the two Lipschitz constants,

namely max(1, maxk
Nik
Di

).
Part 2: Let s be an ε-approximate fixed point of G. Assume WLOG that li([s]) > 0. Let

i ∈ N and let s̃i :=
ai([s])
li([s])

∈ [0,∞). We have Gi(s) = [s̃i]
1+ε

and si = Gi(s)± ε and thus

si = [s̃i]
1+ε ± ε

⇒ [si] ∈
[
[s̃i]

1+ε ± ε
]
= [s̃i ± ε]

where the last equality is easily seen by case distinction on s̃i ≥ 1 + ε and s̃i < 1 + ε. Thus,
[s] is an ε-solution at i.

Proof of Lemma 3. Part 1: Let X and ε be given and consider the function G from
Lemma 12. Let K be the Lipschitz constant and recap that K is polynomial in X and ε.
Since G is continuous on a compact domain, by Brouwer’s fixed point theorem, it has an

27

(exact) fixed point s. Let δ = ε
K+1 . Let s′ be defined by s′i := δbδ−1sic. That is, s′i is si

rounded to multiples of δ. s′ has length n · L where n = |N |, L is the length of δ, and L is
polynomial in the lengths of X and ε.12 Further,

‖s′ −G(s′)‖ ≤ ‖s′ −G(s)‖+ ‖G(s′)−G(s)‖
= ‖s′ − s‖+ ‖G(s′)−G(s)‖
≤ δ +Kδ = (1 +K)δ = ε.

Hence, s′ is an ε-approximate fixed point of G and thus an ε-solution.
Part 2: Proof by reduction to the PPAD-complete generic Brouwer problem (Daskalakis,

Goldberg and Papadimitriou, 2009):

Given n ∈ N, an efficient algorithm for the evaluation of a function G : [0, 1]n →
[0, 1]n, a Lipschitz constant K for G, and an accuracy ε > 0, compute a point x
such that ‖G(x)− x‖ ≤ ε.

We apply the generic Brouwer problem to the function G from Lemma 12. It is easy
to see that one may replace the domain [0, 1] by [0, 1 + ε] without changing the problem in
any significant way (e.g., by scaling inputs and outputs of G by a factor 1 + ε and replacing
ε by ε

1+ε ≥
1
2ε). Again by Lemma 12, we know that the output of the Brouwer problem

gives rise to an ε-solution for X.

E Proofs from Section 6.2

Proof of Lemma 4. We show that the approximate solutions of a circuit correspond to the
approximate fixed points of a certain Lipschitz continuous function. The statement of the
lemma then follows like in the proof of Lemma 3.

For given C and ε define gate functions fg : [0, 1]
l → [0, 1], where l ∈ {0, 1, 2}, as follows:

fCζ := ζ

fC+
(a, b) := [a+ b]

fC−(a, b) := [a− b]
fC×ζ (a) := [ζ · a]

fC>ζ (a) :=

[
1

2ε
a+

1

2
− ζ

2ε

]
Note that fC>ζ is monotonically increasing with fC>ζ (ζ − ε) = 0 and fC>ζ (ζ + ε) = 1.
All gate functions are Lipschitz with constant K := max(2, ζmax,

1
2ε) where ζmax is the

maximum ζ such that C has a C×ζ gate.
Let N = {1, ... , n} be the set of nodes in the circuit. We define a function G : [0, 1]n →

[0, 1]n. For x ∈ [0, 1]n and i ∈ N let Gi(x) be defined as follows:

• If i is an output of a gate g and the inputs of g are nodes a1, ... , al, then Gi(x) :=
fg(xa1 , ... , xal).

• If i is output of no gate, then Gi(x) := xi.

12We assume here that numbers are encoded as fractions of binary integers. Alternatively, one could
choose δ to be the largest power of two ≤ ε

K+1
.

28

Any ε-approximate fixed point of G is an ε-solution of C, though the converse does not hold.
Since all gate functions are Lipschitz with constant K, so is G.

The first part of the lemma now follows just like in the proof of the first part of Lemma 3:
if x is an exact fixed point of G and x′ is x rounded to multiples of δ := ε

K+1 , then x
′ is an

ε-approximate fixed point of G and thus an ε-solution of C and has polynomial length. It is
not a problem that K depends on ε.

The second part of the lemma follows by reduction to the generic Brouwer problem
just like in the proof of the second part of Lemma 3. This in fact proves that the weakly
harder problem of computing an ε-solution where ε is not a parameter, but part of the
input, is still in PPAD. It is again not a problem that K depends on ε because the generic
Brouwer problem takes the Lipschitz constant as an input, just like ε.

Proof of Lemma 5. Rubinstein (Rubinstein, 2015) proved that the following variant of the
ε-GCircuit problem is PPAD-hard for some ε:

1. Scaling is only allowed13 by values ζ ≤ 1 and has error ±ε instead of ±(1 + ζ)ε.

2. There are two additional, redundant gates: C= is a gate that (approximately) copies
its input and C∧ implements an approximate AND operator.

3. The comparison gate compares two inputs rather than compare one input to a constant.

For the first point, note that if ζ ≤ 1, then our C×ζ gate has error (1 + ζ)ε ≤ 2ε and thus
we can achieve Rubinstein’s error bound by considering an ε

2 -solution instead. The second
point does not make the problem any harder because we can express C= as C×1 and C∧ via
the identity x ∧ y = ¬(¬x ∨ ¬y).

Towards the third point, we show how to emulate the behavior of a binary comparison
gate. Let a1 and a2 be the inputs and v the output of the would-be binary comparison
gate. The expected behavior is that x[v] = 0 ± ε if x[a1] ≤ x[a2] − ε and x[v] = 1 ± ε if
x[a1] ≥ x[a2] + ε.

We rewrite the expression x[a1] < x[a2] to use only comparison to a constant in a way
that is robust against ε errors and cut-off at 0 and 1: construct, by combining the appropriate
gates, a sub-circuit corresponding to the expression (12 + (a1 − a2))− (a2 − a1) and call the
output node of that circuit u. If ε′ > 0 and x[·] is an ε′-solution, then x[u] = ũ± 4ε′ where

ũ =

[[
1

2
+ [x[a1]− x[a2]]

]
− [x[a2]− x[a1]]

]
=

[
1

2
+ x[a1]− x[a2]

]
.

Note that x[a1] < x[a2]⇔ ũ < 1
2 . Add a C> 1

2
gate with input u and output v.

Now assume WLOG that ε ≤ 1
2 , let ε

′ = ε
5 , and let x[·] be an ε′-solution. Then

x[a1] ≤ x[a2]− ε ⇒ ũ ≤ 1

2
− ε = 1

2
− 4ε′ − ε′

⇒ x[u] ≤ 1

2
− ε′

⇒ x[v] = 0± ε′ = 0± ε.

Analogously x[a1] ≥ x[a2] + ε ⇒ x[v] = 1± ε.
Altogether, we can construct from any circuit C in Rubinstein’s (2015) framework a

circuit C ′ in our reduced framework such that the ε
5 -solutions of C

′ are ε-solutions of C.
This concludes the proof.

13This assumption can be found in the full version of Rubinstein’s paper (Rubinstein, 2016).

29

References

Acemoglu, Daron, Asuman Ozdaglar, and Alireza Tahbaz-Salehi. 2015. “Systemic Risk
and Stability in Financial Networks.” American Economic Review, 105(2): 564–608.

Allen, Franklin, and Douglas Gale. 2000. “Financial contagion.” Journal of political economy,
108(1): 1–33.

Arora, Sanjeev, Boaz Barak, Markus Brunnermeier, and Rong Ge. 2010. “Computational
complexity and information asymmetry in financial products.” In ICS.

Bank for International Settlements. 2017. “Semiannual OTC derivatives statistics, credit
default swaps, by sector of reference, H1 2016.” http: // stats. bis. org/ statx/ srs/ table/

d10. 4? p= 20161 .
Bardoscia, Marco, Stefano Battiston, Fabio Caccioli, and Guido Caldarelli. 2017. “Path-

ways towards instability in financial networks.” Nature Communications, 8: 14416.
Barucca, Paolo, Marco Bardoscia, Fabio Caccioli, Marco D’Errico, Gabriele Visentin,

Stefano Battiston, and Guido Caldarelli. 2016. “Network Valuation in Financial Systems.”
Working Paper.

Battiston, Stefano, Domenico Delli Gatti, Mauro Gallegati, Bruce Greenwald, and
Joseph E Stiglitz. 2012a. “Liaisons dangereuses: Increasing connectivity, risk sharing, and
systemic risk.” Journal of Economic Dynamics and Control, 36(8): 1121–1141.

Battiston, Stefano, Guido Caldarelli, Robert M May, Tarik Roukny, and Joseph E
Stiglitz. 2016a. “The price of complexity in financial networks.” Proceedings of the National
Academy of Sciences, 113(36): 10031–10036.

Battiston, Stefano, J. Doyne Farmer, Andreas Flache, Diego Garlaschelli, Andrew G.
Haldane, Hans Heesterbeek, Cars Hommes, Carlo Jaeger, Robert May, and Marten
Scheffer. 2016b. “Complexity theory and financial regulation.” Science, 351(6275): 818–819.

Battiston, Stefano, Michelangelo Puliga, Rahul Kaushik, Paolo Tasca, and Guido
Caldarelli. 2012b. “Debtrank: Too central to fail? Financial networks, the FED and systemic
risk.” Scientific reports, 2.

Braverman, Mark, and Kanika Pasricha. 2014. “The computational hardness of pricing
compound options.” In Proceedings of the 5th conference on Innovations in theoretical computer
science.

Chen, X., X. Deng, and S. h. Teng. 2006. “Computing Nash Equilibria: Approximation and
Smoothed Complexity.” In 2006 47th Annual IEEE Symposium on Foundations of Computer
Science (FOCS’06).

Daskalakis, Constantinos. 2013. “On the Complexity of Approximating a Nash Equilibrium.”
ACM Transactions on Algorithms (TALG). Special Issue for SODA 2011, Invited.

Daskalakis, Constantinos, Paul W. Goldberg, and Christos H. Papadimitriou. 2009.
“The Complexity of Computing a Nash Equilibrium.” Commun. ACM, 52(2): 89–97.

Daskalakis, Konstantinos, Paul W. Goldberg, and Christos H. Papadimitriou. 2005.
“The complexity of computing a Nash equilibrium.” Electronic Colloquium on Computational
Complexity (ECCC), , (115).

Dees, Stéphane, Jérôme Henry, and Reiner Martin, ed. 2017. STAMPe: Stress-Test
Analytics for Macroprudential Purposes in the euro area. Frankfurt:European Central Bank.

D’Errico, Marco, Stefano Battiston, Tuomas Peltonen, and Martin Scheicher. 2016.
“How does risk flow in the CDS market?” Working Paper.

Eisenberg, Larry, and Thomas H Noe. 2001. “Systemic risk in financial systems.” Management
Science, 47(2): 236–249.

Elliott, Matthew, Benjamin Golub, and Matthew O. Jackson. 2014. “Financial Networks
and Contagion.” American Economic Review, 104(10): 3115–53.

Hemenway, Brett, and Sanjeev Khanna. 2015. “Sensitivity and Computational Complexity
in Financial Networks.” Working Paper.

Papadimitriou, Christos H. 1994. “On the complexity of the parity argument and other inefficient
proofs of existence.” Journal of Computer and System Sciences, 48(3): 498 – 532.

Rogers, LCG, and Luitgard AM Veraart. 2013. “Failure and rescue in an interbank network.”

30

http://stats.bis.org/statx/srs/table/d10.4?p=20161
http://stats.bis.org/statx/srs/table/d10.4?p=20161

Management Science, 59(4): 882–898.
Roukny, Tarik, Hugues Bersini, Hugues Pirotte, Guido Caldarelli, and Stefano Bat-

tiston. 2013. “Default Cascades in Complex Networks: Topology and Systemic Risk.” Sci. Rep.,
3. Article.

Rubinstein, Aviad. 2015. “Inapproximability of Nash Equilibrium.” In Proceedings of the Forty-
Seventh Annual ACM on Symposium on Theory of Computing. Portland, Oregon, USA:ACM.

Rubinstein, Aviad. 2016. “Inapproximability of Nash Equilibrium.” Working Paper.
Schuldenzucker, Steffen, Sven Seuken, and Stefano Battiston. 2016. “Clearing Payments

in Financial Networks with Credit Default Swaps [Extended Abstract].” In Proceedings of the
17th ACM Conference on Economics and Computation (EC). Maastricht, The Netherlands.

Schuldenzucker, Steffen, Sven Seuken, and Stefano Battiston. 2017a. “Default Ambiguity:
Credit Default Swaps Create New Systemic Risks in Financial Networks.” Working Paper.

Schuldenzucker, Steffen, Sven Seuken, and Stefano Battiston. 2017b. “Finding Clearing
Payments in Financial Networks with Credit Default Swaps is PPAD-complete.” In Proceedings
of the 8th Innovations in Theoretical Computer Science (ITCS) Conference. Berkeley, USA.

Stiglitz, Joseph E. 2010. “Risk and Global Economic Architecture: Why Full Financial Integration
May Be Undesirable.” National Bureau of Economic Research Working Paper 15718.

Visentin, Gabriele, Stefano Battiston, and Marco D’Errico. 2016. “Rethinking Financial
Contagion.” Working Paper.

Zuckerman, David. 2011. “Pseudorandom Financial Derivatives.” In Proceedings of the 12th
ACM Conference on Electronic Commerce. New York, NY, USA:ACM.

31

	Introduction
	Related Work
	Formal Model and Visual Representation
	The Model
	Example and Visual Representation

	The Effect of CDSs on the Solution Set
	The Complexity of Deciding Defaults
	Boolean Circuits as Financial Systems
	Deciding the Default of an Individual Bank
	Deciding Existence of a Solution

	The Complexity of Approximating a Solution without Default Costs
	The eps-FindClearing Search Problem
	Generalized Circuits
	Reduction from Generalized Circuits to Financial Systems
	Addition Gadgets
	Scaling and Comparison
	Boolean Gadgets
	Completing the PPAD-hardness Proof

	Discussion: Origin of the Computational Complexity

	Conclusion
	Proofs from Section 5
	Irrational Solutions
	Properties of Approximate Solutions
	Proofs from Section 6.1
	Proofs from Section 6.2

