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Abstract

Combinatorial auctions (CAs) are used to allocate
multiple items among bidders with complex val-
uations. Since the value space grows exponen-
tially in the number of items, it is impossible for
bidders to report their full value function even in
medium-sized settings. Prior work has shown that
current designs often fail to elicit the most rele-
vant values of the bidders, thus leading to ineffi-
ciencies. We address this problem by introducing
a machine learning-based elicitation algorithm to
identify which values to query from the bidders.
Based on this elicitation paradigm we design a new
CA mechanism we call PVM, where payments are
determined so that bidders’ incentives are aligned
with allocative efficiency. We validate PVM ex-
perimentally in several spectrum auction domains,
and we show that it achieves high allocative effi-
ciency even when only few values are elicited from
the bidders.

1 Introduction

Combinatorial auctions (CAs) are used to allocate multiple
items among bidders who may view these items as comple-
ments or substitutes. Specifically, they allow bidders to sub-
mit bids on bundles of items to express their complex prefer-
ences. CAs have found widespread real-world applications,
including for the sale of spectrum licenses [Cramton, 2013]
and the allocation of TV-ads slots [Goetzendorf et al., 2015].

One of the main challenges when conducting CAs in prac-
tice is that the bundle space grows exponentially in the num-
ber of items, which typically makes it impossible for the bid-
ders to report their full value function. Practical CA designs
address this problem by allowing bidders to report a limited
number of bids which are treated as “all-or-nothing” bun-
dle bids by the auctioneer (see, e.g., Ausubel and Baranov
[2017]). This number can be very small compared to the to-
tal number of bundles. For example, in the 2014 Canadian
spectrum auction [Industry Canada, 2013], bidders were only
allowed to bid on 500 out of the 298 possible bundles.

1.1 Selecting Bundles to bid on in CAs
To help bidders select which bundles to bid on, most fielded
CAs (such as the Combinatorial Clock Auction (CCA)
[Ausubel and Baranov, 2017]), include an iterative elicita-
tion phase where prices are used to coordinate the bidding
process: as each ask price is quoted, bidders are asked to re-
spond to a demand query, i.e., to state their profit-maximizing
bundle at the quoted prices. However, multiple experimental
studies have shown that bidders may not be able to accurately
respond to this type of query as this may require full explo-
ration of their exponentially-sized value space. In particular,
Scheffel et al. [2012] and Bichler et al. [2013] have shown
that bidders tend to focus on a limited search space consisting
of some bundles of items selected prior to the auction, and
that this can cause significant inefficiencies. Furthermore,
most auctions (e.g., the CCA) use anonymous linear prices
for their elicitation, but to guarantee efficiency, the auction
may require an exponential number of personalized bundle
prices [Nisan and Segal, 2006]. Notionally, one can view
the mechanism we propose as similar to the CCA. However,
while in the CCA prices do the job of coordinating bidders
towards finding an efficient allocation, in our approach, a ma-
chine learning-based elicitation algorithm serves this role.

1.2 Machine Learning to the Rescue
Accordingly, our first contribution in this paper is a new elic-
itation paradigm that uses machine learning (ML) to identify
which values to query from the bidders. As our elicitation al-
gorithm asks bidders to only explore a very small part of their
value space, we cannot provide efficiency guarantees upon
termination. However, our elicitation approach achieves high
average efficiency in our experimental evaluation.

Since values are bidders’ private information, we must also
incentivize bidders to truthfully reveal enough of these values
to determine an efficient allocation. When bidders can report
their complete valuations, this can be achieved by using the
well-known VCG mechanism [Vickrey, 1961; Clarke, 1971;
Groves, 1973]. VCG is strategyproof, i.e., under VCG, bid-
ders have a dominant strategy to report their true valuations.
Unfortunately, the attractive incentive properties of VCG can-
not be extended straightforwardly to scenarios where values
are iteratively elicited and where bidders can (indirectly) af-
fect which values are asked from the others. To address
this, and inspired by an elicitation technique based on mul-



tiple price trajectories (see, e.g., Ausubel [2006]), we design
a mechanism that invokes our elicitation algorithm multiple
times to derive payments that are closely related to VCG pay-
ments. We refer to this mechanism as the pseudo-VCG mech-
anism (PVM). While PVM is not strategyproof, we prove that
it aligns bidders’ incentives with allocative efficiency.

Elicitation approaches based on ML date back to the early
2000s. Using techniques from computational learning the-
ory, Lahaie and Parkes [2004] and Blum et al. [2004] identi-
fied classes of valuations for which effective elicitation meth-
ods exist that lead to an efficient allocation. Elicitation ap-
proaches based on ML for generic valuations were introduced
by Lahaie [2011] and further developed by Lahaie and Lu-
bin [2017]. These approaches are based on using ML to find
effective ask prices that properly coordinate bidders towards
efficient allocations. Similarly, Brero and Lahaie [2018] pro-
posed an elicitation approach based on Bayesian principles
that integrates prior knowledge about bidders’ values to speed
up the search for these ask prices.

In contrast to the pre-dominant research agenda in this
field, we previously used ML to directly reason about bid-
ders’ valuations [Brero et al., 2017]. In that paper, we spec-
ified an allocation rule based on predicted social welfare, but
we did not consider incentives or payments. The present pa-
per is closely related in that we also do not use ask prices and
instead employ value queries. However, in this work, we only
use the ML algorithm to guide our elicitation algorithm, aim-
ing to elicit the most useful information from the bidders. In
contrast to our prior work [Brero et al., 2017], we do not com-
pute the final allocation based on predicted valuations. While
subtle, this difference turns out to have important incentive
implications. Finally, in many domains, the process of valu-
ing even a single bundle can be a costly exercise for bidders
(see, e.g., Parkes [2006]). To address this, we also show how
our elicitation paradigm can be used effectively in scenarios
where, instead of reporting their exact values, bidders only
report upper and lower bounds on values.

2 Formal Model
In a combinatorial auction (CA), there is a set of m indivisi-
ble items being auctioned off to n bidders. We refer to the set
of items together with the set of bidders as the setting of the
CA. We use notation [n] = {1, ..., n}, so that [n] and [m] de-
note the index sets of the bidders and the items, respectively.
A bundle is a subset of the set of items. We associate each
bundle with its indicator vector and denote the set of bundles
as X = {0, 1}m. We represent the preferences of each bid-
der i with a value function vi : X → R≥0 that is private
knowledge of the bidder. Thus, for each bundle x ∈ X , vi(x)
represents the true value that bidder i has for obtaining x.

In this paper, we design a CA that ask bidders to report
their value for particular bundles (i.e., we use value queries).
Based on the reported values, our CA determines an alloca-
tion and charges payments. An allocation is a vector of bun-
dles a = (a1, . . . , an), with ai being the bundle that bidder i
obtains. An allocation is feasible if each item is allocated to at
most one bidder. We denote the set of feasible allocations by
F . Payments are defined as a vector p = (p1, ..., pn) ∈ Rn,

with pi denoting the amount charged to bidder i.
We assume that bidders have quasi-linear utilities, i.e., bid-

der i’s utility for bundle x at price pi is vi(x)−pi. We let v =
(v1, . . . , vn) denote the vector of bidders’ value functions and
v−i = (v1, . . . , vi−1, vi+1, . . . , vn) the corresponding vector
where bidder i is excluded. The social welfare of an alloca-
tion a is the sum of the the bidders’ values for a, V (a) =∑
i∈[n] vi(ai). The social welfare-maximizing (i.e., efficient)

allocation is denoted as a∗v ∈ argmaxa∈F V (a). We measure
the efficiency of any allocation a as V (a)/V (a∗v).

In the present work, we do not ask bidders to reveal their
whole value function vi(·). Instead, we ask bidders to report
values for a small subset of the bundles.1 We let v̂i(x) de-
note bidder i’s (possibly non-truthful) report on bundle x.
We let ϑ̂i denote a generic set of such bundle-value pairs
(which we also refer to as value reports) reported by bid-
der i. For notational simplicity, we say that x ∈ ϑ̂i if
(x, v̂i(x)) ∈ ϑ̂i. We let ϑ̂ = (ϑ̂1, . . . , ϑ̂n) denote the vec-
tor of these sets. Given two vectors ϑ̂ and ϑ̂′, we say that
ϑ̂ ⊆ ϑ̂′ if, for each i ∈ [n], ϑ̂i ⊆ ϑ̂′i. Given a set of reports
ϑ̂, we define the reported social welfare in an allocation a as
V̂ (a; ϑ̂) =

∑
i∈[n]:ai∈ϑ̂i

v̂i(ai). The optimal allocation with

respect to ϑ̂ is denoted a∗
ϑ̂
∈ argmaxa∈F V̂ (a; ϑ̂). Note that,

without loss of generality, we can always assume that a∗
ϑ̂

con-

sists of bundles contained in ϑ̂. Furthermore, for any ϑ̂ ⊆ ϑ̂′,
we have that V̂ (a∗

ϑ̂
; ϑ̂) ≤ V̂ (a∗

ϑ̂′
; ϑ̂′). Finally, we letM de-

note a generic CA mechanism, consisting of (1) a procedure
to determine an allocation and (2) a payment rule.

3 Machine Learning-based Elicitation
The key innovation of the auction design we propose in this
paper is the use of an elicitation method (querying values
from the bidders) that is powered by a machine learning al-
gorithm. An elicitation method is a (possibly iterative) pro-
cedure to obtain a vector of reports ϑ̂ from the bidders. In a
mechanism one may use multiple runs of different parame-
terizations of an elicitation method. We will make use of this
technique in the design of our mechanism in Section 4.1.

As the elicitation method of our CA, we now intro-
duce our ML-based elicitation algorithm. This algorithm is
parametrized by an ML algorithm A that, given a vector of
bundle-value pairs ϑ̂, outputs a function Ṽ = A(ϑ̂), which
provides us with an estimate of the social welfare Ṽ (a) for
each allocation a. In Section 5, we will instantiateA via sup-
port vector regression algorithms.

We present our elicitation algorithm in Algorithm 1. We
start from a vector ϑ̂0 of values reported by the bidders (Line
1). Each set of initial values ϑ̂0i can either be selected by the
algorithm or by bidder i. At each round t, the algorithm ap-
plies A to the bundle-value pairs ϑ̂t−1 to obtain the inferred
social welfare function Ṽ t (Line 4), and then it computes the
corresponding optimal allocation at (Line 5). If all values for

1We ensure that a bidder never reports a value for a given bundle
twice.



Algorithm 1: ML-based Elicitation Algorithm.
Parameter: Machine learning algorithm A

1 ϑ̂0 = initial vector of values, t = 0
2 do
3 t← t+ 1

4 Infer social welfare function Ṽ t = A(ϑ̂t−1)
5 Determine allocation at ∈ argmaxa∈F Ṽ

t(a; ϑ̂t−1)
6 for each bidder i do
7 if ati /∈ ϑ̂

t−1
i then

8 Query value v̂i(ati)
9 ϑ̂ti = ϑ̂t−1i ∪ (ati, v̂i(a

t
i))

10 else
11 ϑ̂ti = ϑ̂t−1i
12 end
13 end
14 while ∃i ∈ [n] : ati /∈ ϑ̂

t−1
i

15 Output final set of bundle-value pairs ϑ̂T , where T = t

the bundles in at have already been queried and are thus con-
tained in ϑ̂t−1, then the elicitation stops (Line 14). Otherwise,
the algorithm queries these values (Line 8), and iterates.

Note that Algorithm 1 is agnostic to the ML algorithm A
used in Line 4. However, it is intuitive that the higher the ac-
curacy of A the higher the efficiency of the allocation deter-
mined by the elicitation algorithm. Proposition 1 formalizes
this relationship between the inference error of the inferred
social welfare function Ṽ t at any round t and the efficiency
of the allocation determined by the elicitation algorithm:
Proposition 1. Assume that bidders report their true values.
Then, for any t, the following holds:

V (a∗v)−V (a∗
ϑ̂T ) ≤ Ṽ t(at)−V (at)+V (a∗v)− Ṽ t(a∗v). (1)

Proof. By the end of round t, the values of all bundles in
at will have been queried by the algorithm and thus will
be contained in ϑ̂t by construction. We then have that
V̂ (at; ϑ̂t) ≤ V̂ (a∗

ϑ̂t
; ϑ̂t). Furthermore, as ϑ̂t ⊆ ϑ̂T , we have

that V̂ (a∗
ϑ̂t
; ϑ̂t) ≤ V̂ (a∗

ϑ̂T
; ϑ̂T ). Putting the two inequalities

together, we obtain V̂ (at; ϑ̂t) ≤ V̂ (a∗
ϑ̂T

; ϑ̂T ). Under the as-
sumption that bidders report their true values, we can replace
V̂ (at; ϑ̂t) with V (at) and V̂ (a∗

ϑ̂T
; ϑ̂T ) with V (a∗

ϑ̂T
) to obtain

V (a∗v)− V (at) ≥ V (a∗v)− V (a∗
ϑ̂T ). (2)

Next, because Ṽ t(·) is optimal at at, some algebra yields:

V (a∗v)− V (at) ≤ Ṽ t(at)− V (at) + V (a∗v)− Ṽ t(a∗v). (3)

Inequality (1) follows from inequalities (2) and (3).

In words, Proposition 1 shows that the efficiency loss at-
tributable to the ML algorithm A is bounded by the sum of
the inference errors at at and a∗v at any round t.

We can gain additional insight about the possible efficiency
loss by considering the special case when the ML algorithm

A is always accurate at the reported bundle-value pairs (i.e.,
the ML algorithm has no in-sample error). When Algo-
rithm 1 terminates, the values for aT will be contained in
ϑ̂T−1. With the assumption that we have no in-sample er-
ror, we can now argue that Ṽ T (aT ) − V (aT ) = 0. We
can now use Proposition 1 to obtain V (a∗v) − V (a∗

ϑ̂T
) ≤

V (a∗v)− Ṽ T (a∗v). Note that Ṽ T (a∗v) is guaranteed to be less
than or equal to V (a∗v) because the left-hand-side of the in-
equality is always positive. Thus, at termination, any effi-
ciency loss in the outcome is bounded by the underestimation
of V (a∗v) by the ML algorithm at time T .
Remark 1. Note that Algorithm 1 corresponds to the elic-
itation approach we presented in our prior work [Brero et
al., 2017, Algorithm 2], except for one small generalization.
Algorithm 2 of the earlier work enforced the inferred social
welfare to be constructed as the sum of n independent value
functions, i.e. Ṽ t =

∑
i ṽ
t
i , while we do not require this for

Algorithm 1. If the same structure were imposed on Algo-
rithm 1, then both algorithms would query the same values.

4 The Combinatorial Auction Mechanism
In this section, we describe our CA mechanism. We show
how our ML-based elicitation algorithm can be used as a sub-
routine to design a mechanism that aligns bidders’ incentives
with allocative efficiency. This means that, for each bidder
i, a strategy that maximizes bidder i’s utility also maximizes
the social welfare with respect to her true valuation and the
other bidders’ (possibly non-truthful) reports.

More formally, we assume that, under a generic auction
mechanismM, each bidder i reports her values according to
a strategy σi. Let σ = (σ1, .., σn) denote the vector of these
strategies. We use aM = aMσ and pM = pMσ to denote the
allocation and the payments determined byM under strate-
gies σ, respectively. For each bidder i, we let uMi = uMi,σ be
the bidder’s utility under σ. With this, we can define:
Definition 1 (Incentive Alignment). A mechanismM aligns
bidders’ incentives with allocative efficiency if, for each i ∈
[n], and for every configuration of strategies σ−i for the bid-
ders other than i, the following holds:

argmax
σi

uMi ⊆ argmax
σi

vi(a
M
σ ) +

∑
j 6=i

v̂j(a
M
σ ). (4)

VCG achieves incentive alignment by letting bidders report
their values in one shot. Given reports ϑ̂, VCG allocates items
according to avcg = a∗

ϑ̂
, and charges each bidder i payment

pvcgi =
∑
j 6=i v̂j(a

∗
ϑ̂−i

)−
∑
j 6=i v̂j(a

vcg). Thus, the utility of
bidder i under VCG is:

uvcgi =
(
vi(a

vcg) +
∑
j 6=i

v̂j(a
vcg)

)
−
∑
j 6=i

v̂j(a
∗
ϑ̂−i

). (5)

As bidder i cannot affect the third term, i.e.,
∑
j 6=i v̂j(a

∗
ϑ̂−i

),
her optimal strategy must maximize the first two terms, thus
satisfying incentive alignment. In addition to aligning incen-
tives, VCG is also strategyproof, i.e., every bidder maximizes
her utility by reporting all of her true values, independent of
the other bidders’ behavior.



Algorithm 2: Pseudo-VCG Mechanism (PVM)

1 Run Algorithm1 n+1 times to get ϑ̂(−∅), ϑ̂(−1), ..., ϑ̂(−n).
2 Let ϑ̂? = ∪i∈[n]ϑ̂(−i) ∪ ϑ̂(−∅).
3 Determine allocations a(−∅), a(−1),. . . , a(−n).
4 Allocate items according to

apvm ∈ argmax
a∈{a(−∅),a(−1),...,a(−n)}

V̂ (a; ϑ̂?). (6)

.5 Charge each bidder i according to:

ppvmi =
∑
j 6=i

v̂j(a
(−i))−

∑
j 6=i

v̂j(a
pvm). (7)

However, when we use an iterative elicitation process,
the good incentive properties of VCG cannot be extended
straightforwardly because each bidder i can (indirectly) affect
which values are queried from the other bidders. Thus, if we
want incentive alignment, we need to be more careful about
elicitation and about computing allocations and payments.

4.1 Pseudo-VCG Mechanism
We now introduce the Pseudo-VCG Mechanism (PVM). The
key idea is to use several runs of our ML-based elicitation
algorithm to construct a mechanism that exhibits incentive
alignment. The approach is closely related to VCG, but to
remove the indirect effect that each bidder i might have on
the term

∑
j 6=i v̂j(a

∗
ϑ̂−i

), PVM computes each such term via
a separate run of the elicitation algorithm.

See Algorithm 2 for the details of PVM. In Step 1, PVM
runs the elicitation algorithm (Algorithm 1) n+1 times, once
in the setting including all bidders (resulting in reports ϑ̂(−∅)),
and once in each of the n settings where one of the bidders has
been excluded, resulting in ϑ̂(−i).2 In Step 2, PVM computes
ϑ̂?, i.e., the union of the reports from all n + 1 elicitation
runs. In Step 3, PVM computes the optimal allocations for
each run based on the corresponding reports, i.e., a(−∅) based
on ϑ̂(−∅), a(−1) based on ϑ̂(−1), and so on. In Step 4, PVM
chooses the final allocation apvm from among those alloca-
tions to maximize the reported social welfare based on ϑ̂?. In
Step 5, payments are calculated according to Equation (7).

4.2 Incentive Analysis
We have the following Proposition:
Proposition 2. Under PVM, bidders’ incentives are aligned
with allocative efficiency.

Proof. The utility of bidder i under PVM is

upvmi =
(
vi(a

pvm) +
∑
j 6=i

v̂j(a
pvm)

)
−
∑
j 6=i

v̂j(a
(−i)). (8)

2We use the “(-i)” notation in ϑ̂(−i) and a(−i) to denote the re-
ports and allocations that result from a separate run of our elicitation
algorithm. Note the difference from the standard subscript “-i” no-
tation (e.g., ϑ̂−i) which denotes exclusion of bidder i from a vector.

As bidder i’s reports cannot affect
∑
j 6=i v̂j(a

(−i)), she maxi-
mizes her utility by maximizing vi(apvm)+

∑
j 6=i v̂j(a

pvm),
which is aligned with allocative efficiency.

However, PVM is not strategyproof. A bidder may be able
to increase her utility by misreporting her values to increase∑
j 6=i v̂j(a

pvm). This is illustrated in the following example:

Example 1. Consider a setting with n = m = 2, and
suppose we use an ML algorithm A that infers the social
welfare as Ṽ = ṽ1 + ṽ2. Additionally, assume that each
ṽi is derived from the reported values via 2d linear regres-
sion. Assume that bidder 1’s true values are v1(1, 0) =
v1(0, 1) = v1(1, 1) = 0.5, and that bidder 2’s true values
are v2(1, 0) = 0 and v2(0, 1) = v2(1, 1) = 2. Assume
that bidder 2 reports truthfully. Suppose that the mecha-
nism first queries bundle (1, 1) from bidder 2 receiving report
v̂2(1, 1) = 2, thus inferring values ṽ2(1, 0) = ṽ2(0, 1) = 1.
If now bidder 1 reports any of her true values, PVM allocates
bundle (1, 1) to bidder 2 and the utility of bidder 1 is 0. In
contrast, if bidder 1 instead reports a value of 1.1 for the bun-
dle (1, 0), then the mechanism next queries bidder 2’s value
for (0, 1) (i.e., the optimal allocation according to Ṽ ) and
determines a final allocation where 1 wins (1, 0) and 2 wins
(0, 1). Thus, as her utility is now 0.5 (because her PVM pay-
ment would be 0), bidder 1 has benefited from her misreport.

Observe that the reason for the beneficial misreport for bid-
der 1 is that the ML algorithm does not accurately infer bidder
2’s values. Informally, this generalizes as: the better the ML
algorithm, the smaller the incentive for bidders to manipu-
late. To formalize this idea, we introduce the following con-
cepts: we say that a bidder has complete information when
she knows all other bidders’ values and their strategies. A
bidder has perfect information when she knows exactly all of
the rules governing the execution of the mechanism (includ-
ing all random numbers that will be used).

Proposition 3. Let Ṽ t be the social welfare function inferred
by PVM at round t of the elicitation run in the setting in-
cluding all bidders, and let at be its corresponding optimal
allocation. If the other bidders report their true values, then
the ex post regret r under complete and perfect information
of any bidder reporting truthfully satisfies

r ≤ Ṽ t(at)− V (at) + V (a∗v)− Ṽ t(a∗v). (9)

Proof. Let τ be any configuration of strategies where all bid-
ders are reporting truthfully. From Equation (8) we have that
the utility of any bidder i under this configuration of strate-
gies is V (apvmτ ) −

∑
j 6=i v̂j(a

(−i)
τ−i ), where a(−i)τ−i is the al-

location determined by the elicitation run excluding bidder
i. Since the other bidders are truthful, the maximum util-
ity achievable by bidder i cannot be greater than V (a∗v) −∑
j 6=i v̂j(a

(−i)
τ−i ). Thus, under any kind of information setting,

the ex post regret r of any bidder reporting truthfully satisfies
r ≤ V (a∗v)−V (apvmτ ). From the definition of apvmτ we have
that V (a∗v) − V (apvmτ ) ≤ V (a∗v) − V (a

(−∅)
τ ). Since all bid-

ders report their true values, we can apply Proposition 1 to
bound V (a∗v)− V (a

(−∅)
τ ), which concludes the proof.



In words, Proposition 3 says that, the better the perfor-
mance of the ML algorithm, the lower the regret for reporting
truthfully. Moreover, recall from our discussion of Proposi-
tion 1 that, when the elicitation run terminates, the values for
aT are contained in ϑ̂T−1. Thus, if A has no in-sample er-
ror, then the regret bound simplifies to r ≤ V (a∗v)− Ṽ T (a∗v).
Then, any regret from reporting truthfully is bounded by the
underestimation of V (a∗v) in round T (in the setting including
all bidders).

Remark 2. Note that the regret is bounded in terms of so-
cial welfare and not in terms of bidders’ individual values,
which makes the bound relatively weak in practice. However,
also note that we derived Proposition 3 for the complete and
perfect information setting. The manipulation in Example 1
also relies on bidders being fully informed about the auction
process. In practice, one can make the auction more robust
against manipulations by limiting information sharing. For
example, one can isolate the bidders during the auction by
performing all n+ 1 elicitation runs in parallel and commu-
nicating to each bidder only the set of bundles that she should
evaluate at each step.

4.3 Individual Rationality
A mechanism is individually rational if each bidder’s pay-
ment is less than or equal than this bidder’s reported value for
her final allocation. We can show:

Proposition 4. PVM satisfies individual rationality.

Proof. We show that, for each i: v̂i(apvm)−ppvmi ≥ 0. From
the definition of the PVM payment rule this is equivalent to∑
j∈[n] v̂j(a

pvm)−
∑
j 6=i v̂j(a

(−i)) ≥ 0. This holds because
apvm is chosen from a(−∅), a(−1), ..., a(−n) so as to maxi-
mize the reported social welfare (Equation 6).

4.4 No Deficit
Ideally, a mechanism stipulating transfers between its partici-
pants and the center should not run at a deficit. Unfortunately,
PVM does not guarantees the no deficit property, without fur-
ther alteration. From Equation (7) we note that each payment
ppvmi is expected to be positive because the allocation a(−i)
is derived as an optimal allocation for the setting excluding
bidder i. However, it may be the case that the allocation
apvm happens to achieve higher reported social welfare with
respect to the setting excluding bidder i than a(−i). When
this happens, our mechanism may run a deficit. Although for-
mally possible, these violations are extremely rare in practice,
and we do not observe any in the experiments we describe in
Section 6. Further, one can always enforce no deficit by set-
ting a lower bound to payments, albeit at the consequence of
slightly relaxing the incentive alignment property of PVM.

4.5 PVM with Partitions
One drawback of PVM is that the number of elicitation runs
(i.e., n + 1), and thus the total number of queries, scales lin-
early in the number of bidders. For large auctions (e.g., with
100s of bidders), this may lead to too many queries. For this

reason, we now present a modified version of PVM that re-
quires fewer queries. The approach is very similar to Algo-
rithm 2, but instead of excluding a single bidder at a time, the
bidders are first partitioned into k groups, with k < n. We
then perform k+1 elicitation runs, once in the setting includ-
ing all bidders and once in each of the k settings where the
corresponding group of bidders is excluded. We consequently
call the approach PVM with partitions (PVMp).

PVMp is also incentive aligned. To see this, note that, for
Proposition 2, we only need to guarantee that bidder i can-
not affect the other bidders’ values for a(−i) in Equation (7).
Thus, we can replace a(−i) with an allocation obtained after
running the ML-based elicitation algorithm on a setting ex-
cluding a group of bidders containing i. However, there is one
caveat: if the exclusion of a group of bidders leads to a sig-
nificantly less efficient allocation a(−i) in Equation (7), then
the payments may become negative. Thus, bad groupings of
bidders can lead to low revenue and/or deficit violations. We
will discuss this again in Section 6.3.

Remark 3. At this point, we would like to emphasize the main
difference between PVM and the mechanism we proposed in
[Brero et al., 2017, Algorithm 2]. In our previous work, the
ML-based inferred valuations were not just used to guide the
elicitation, but also to compute the final allocation (and pay-
ments). In the present work, the ML algorithm is only used for
elicitation, and the final allocation and payments are based
only on the reported bundle-value pairs. This change is sub-
tle, but it has profound effects for incentives. The good incen-
tive properties of PVM crucially rely on the fact that the final
allocation maximizes social welfare in reported values, and
the payments are also computed based on reported values. If,
as in our earlier framework, we would optimize the final al-
location on inferred valuations, then this would either break
individual rationality or the regret bound, unless an expres-
sive (i.e., no in-sample error) ML algorithm were used. How-
ever, the expressive ML algorithms we studied in our prior
work are computationally prohibitive to use in very large do-
mains. Because PVM does not rely on expressiveness, we can
use significantly faster, non-expressive ML algorithms, which
enables us to scale to larger domains (e.g., with 98 goods),
which was not possible using the earlier approach.

5 Instantiating the Mechanism via SVRs
So far, our presentation of PVM has been agnostic regard-
ing which particular ML algorithm to use in the preference
elicitation algorithm. However, this choice is very important
because it determines the computational complexity of the
overall mechanism. To determine which values to query at
round t, we need to find a feasible allocation at that maxi-
mizes the inferred social welfare Ṽ t. In general, determining
such an allocation may require examining all nm allocations,
which is not tractable. However, if the ML algorithm exhibits
useful structure, we can exploit that structure when search-
ing for the social welfare-maximizing allocation. To design
a computationally practical mechanism we closely follow the
approach taken in our earlier work [Brero et al., 2017], where
we specified Ṽ as the sum of n value functions ṽi inferred



from the sets of value reports ϑ̂i. To infer the individual value
functions ṽi we use support vector regression (SVR).

5.1 Support Vector Regression
In this sub-section, we review the basics of SVRs (for an in-
troduction, see Smola and Schölkopf [2004]). To determine
ṽi(x) from a set of ` reported values ϑ̂i = {(xik, v̂ik)}`k=1,
where v̂ik = v̂i(xik), the SVR algorithm projects bundle x
into a high dimensional feature space via a mapping func-
tion ϕ(x) and determines a linear model w in this feature
space so that ṽi(x) = w · ϕ(x). To determine the weights
w, the method simultaneously minimizes the error on the re-
ported values and prevents overfitting through the regulariza-
tion term w · w. Formally, w is the solution of:

min
w,e

w · w + C
∑̀
k=1

L(eik) (10)

s.t. v̂ik = w · ϕ(xik) + eik ∀ 1 ≤ k ≤ `
where C determines the trade-off between accuracy in the re-
ported values and the regularization, each eik represents the
interpolation error at xik, and L(eik) is the loss due to this
error. Traditionally, SVR uses the ε-insensitive loss with

L(eik) = max(0, |eik| − ε). (11)
Once the SVR has been trained (by solving the optimization
problem in Equation (10)), values can be predicted as

ṽi(x) =
∑̀
k=1

αikκ(x, xik), (12)

where the αik are the solution to the dual of Problem (10),
and κ(x, x′) = ϕ(x) · ϕ(x′) is a kernel function. The ker-
nel function implicitly computes the scalar product of x and
x′ in the feature space and establishes a measure of similar-
ity between these bundles. By employing a kernel, a linear
regressor in the feature space can produce a non-linear re-
gressor in the untransformed value space. As we have shown
in Brero et al. [2017], for a large family of kernel functions
the optimization problem that determines at can be tailored to
the representation in Equation (12) and encoded as a succinct
integer program. Thus, if we instantiate the ML algorithm A
as an SVR with a suitably chosen kernel, we can construct
computationally practical mechanisms.

5.2 Linear and Quadratic Kernels
In this paper, we focus on two classes of kernel called linear
and quadratic kernels. Given a non-negative parameter λ,
a quadratic kernel is defined as κ(x, x′) = x · x′ + λ (x ·
x′)2. Linear kernels are the special case where λ = 0. Note
that the SVRs we consider are thus characterized by three
meta-parameters: the interpolation weightC, the insensitivity
threshold ε, and the kernel parameter λ. In our experiments
we tune these meta-parameters on a hold-out data set.

6 Experimental Evaluation
In this section, we present the experimental evaluation of our
new approach. First, we introduce our experiment set-up.
Then we evaluate the performance of our ML-based elici-
tation algorithm on its own, before we finally evaluate the
performance of our Pseudo-VCG Mechanism (PVM).

6.1 Experiment Set-up
Domains. Because spectrum auctions are a very important
application for CAs, we perform our evaluations in this con-
text. We use the Spectrum Auction Test Suite (SATS) ver-
sion 0.5.2 [Weiss et al., 2017] for our experiments, which al-
lows us to easily generate thousands of auction instances on
demand. SATS gives us access to each bidder’s true values
across the full 2m value space, and it enables us to compute
an efficient allocation with respect to these full value profiles
in a fast way (using succinct IP formulations). We tested our
approach on three of the value models provided by SATS:
• The Global Synergy Value Model (GSVM) [Goeree and

Holt, 2008], which generates medium-sized instances
with 18 items and 7 bidders. GSVM models the items
(spectrum licenses) as being arranged in two circles. De-
pending on her type, a bidder may be interested in li-
censes from different circles and has a value that de-
pends on the total number of licenses of interest.
• The Local Synergy Value Model (LSVM) [Scheffel et

al., 2012], which generates medium-sized instances with
18 items and 6 bidders. LSVM is more complex than
GSVM: it places the items on a two-dimensional grid,
and a bidder’s value depends on a sigmoid function of
the number of contiguous licenses.
• The Multi-Region Value Model (MRVM) [Weiss et al.,

2017], which generates large instances with 98 items and
10 bidders. MRVM is the most complex model and cap-
tures large US and Canadian auctions by modeling the
licenses as being arranged in multiple regions and bands.
Bidders’ values are affected by both geography and fre-
quency dimensions of the licenses. Depending on the
type and on the number of licenses of interest, bidders
are categorized as national, regional or local.

Algorithm and Mechanism Set-up. Each elicitation run
starts with an initial set of value reports ϑ̂0, where each ϑ̂0i
consists of c0 bundles drawn uniformly at random from the
bundle space without replacement. Most deployed CAs im-
pose a cap on the number of bundles for which bidders can
specify a value, enabling the auctioneer to trade off allocative
efficiency against computational efficiency. We adopt a sim-
ilar approach by capping the number of queries in any elic-
itation run, and we denote this cap as ce. As PVM invokes
our elicitation algorithm n+ 1 times, and as the initial set of
queried values ϑ̂0 is the same for all runs, the cap cpvm on the
total number of queries that can be asked from each bidder is

cpvm = c0 + (n+ 1) · (ce − c0). (13)

To achieve a total number of queries comparable to that found
in real-world auctions, we used ce = 50 for GSVM and
LSVM, and ce = 100 in MRVM. In each domain, the optimal
c0 under cap ce was selected using hold-out data, resulting in
c∗0 = 40 for GSVM and LSVM and c∗0 = 30 for MRVM.

As discussed in Section 5, we use SVRs with linear and
quadratic kernels as the ML algorithm. The meta-parameters
of the SVR were tuned using hold-out data. While linear
kernels have much lower computational costs, quadratic ker-
nels lead to more accurate predictions and thus require fewer



Domain Elicitation
Method

# of Queries /
Bidder

Elicitation
Efficiency

GSVM

No Elicitation 0 22.0% (0.9%)
Random Query 50 68.8% (0.7%)

ML-based ≤ 50 98.5% (0.1%)
Full Elicitation 218 100.0% (0.0%)

LSVM

No Elicitation 0 20.3% (0.6%)
Random Query 50 62.5% (0.8%)

ML-based ≤ 50 93.5% (0.4%)
Full Elicitation 218 100.0% (0.0%)

MRVM

No Elicitation 0 32.7% (0.6%)
Random Query 100 51.5% (0.4%)

ML-based ≤ 100 93.3% (0.1%)
Full Elicitation 298 100.0% (0.0%)

Table 1: Elicitation efficiency and average number of queries asked
under different elicitation methods assuming truthful reports. Stan-
dard errors are reported in parentheses. All results are averaged over
100 auction instances.

queries to achieve high efficiency. In our experiments, we
found that, for the same number of queries, quadratic kernels
provided about a 2% gain in efficiency in MRVM, and a 10%
gain in GSVM and LSVM. Accordingly, we present results
for quadratic kernels; results for linear kernels are qualita-
tively similar at a correspondingly lower efficiency.

The integer programs (IPs) used to find the allocations at
were solved with CPLEX Studio (version 1261). We set a
time limit of 1h for solving each IP and, when the time limit
was reached, adopted the best solution found so far. We con-
ducted our experiments on machines with Intel Xeon E5-2650
v4 2.20GHz processors with 40 logical cores. The n+1 elic-
itation runs in PVM were run in parallel. Since n = 10 in our
largest models, we had up to 11 elicitations running in par-
allel, and thus allocated 3 logical cores to CPLEX for each
elicitation run, such that we never requested more than the
available number of cores on a single machine.

6.2 Evaluation of ML-based Elicitation
In this section, we evaluate our ML-based elicitation algo-
rithm (i.e., a single run of Algorithm 1). We compare it
against three baselines. First, we consider No Elicitation,
which does not query any values and allocates each item to a
bidder selected uniformly at random. We include this “degen-
erate” elicitation method as a baseline to obtain a lower bound
on efficiency that can trivially be achieved without any elicita-
tion. Next, we consider Random Query, which asks each bid-
der her values for a pre-specified number of bundles, whereby
the bundles are selected uniformly at random in the bundle
space without replacement. The allocation is then selected
by solving the winner determination problem based on those
reported values. This baseline represents the performance of
uninformed sampling from the bundle space without any ML-
based elicitation. Lastly, we include Full Elicitation, which
leverages the special capability of SATS to directly encode
value functions in a winner determination MIP so that a full
value profile can be implicitly evaluated without requiring an
otherwise infeasible enumeration of, e.g., 298 goods. This

Domain Evaluation Uncertainty (µ)
0% 1% 5%

GSVM 98.5% (0.1%) 98.0% (0.2%) 96.3% (0.2%)
LSVM 93.5% (0.4%) 93.1% (0.5%) 91.2% (0.6%)
MRVM 93.3% (0.1%) 92.3% (0.3%) 85.8% (0.4%)

Table 2: Elicitation efficiency of ML-based elicitation with upper
and lower bounds on values. Standard errors are reported in paren-
theses. All results are averaged over 100 auction instances.

represents an upper bound on efficiency because full elicita-
tion is generally infeasible in practice.

Table 1 presents the results from running these baselines
as well as our ML-based elicitation algorithm. Despite only
querying a small number of values from each bidder, our
ML-based elicitation algorithm achieves more than 98% effi-
ciency in the GSVM domain, and more than 93% efficiency
in the more complex LSVM domain and in the highly real-
istic MRVM domain. The No Elicitation results show that
all domains exhibit complex value structures such that high
efficiency cannot be achieved by simply assigning items at
random. The Random Query baseline results show that the
ML algorithm used in our elicitation has a huge effect on
efficiency. In MRVM, this effect translates into an average
efficiency increase of more than 40% points.

Elicitation with Upper and Lower Bounds. It is often eas-
ier for bidders to specify bounds on bundle values, rather than
determine such values precisely. We have therefore devel-
oped a modification of Algorithm 1 that works when bidders
report upper and lower bounds instead of exact values.

To adapt Algorithm 1 to handle bounds, the key step to
modify is Step 4 of the algorithm, i.e., how to apply ML
algorithm A on reports consisting of bounds. This works
particularly well when SVRs are used as the ML algorithm.
Specifically, we can then leverage the particular structure of
the ε-insensitive loss function used in standard SVR, pre-
sented in Equation (11). Note that this loss function does
not penalize any linear model w for which w · ϕ(xik) ∈
[v̂ik − ε, v̂ik + ε]. This means that we can employ the fol-
lowing trick: we consider any report consisting of an upper
bound v̂uik and a lower bound v̂`ik as if the bidder had reported
value v̂ik = (v̂uik + v̂`ik)/2. As long as we also measure the
interpolation error in this sample via an insensitivity loss with
εik = (v̂uik − v̂`ik)/2, we guarantee that the semantics of the
bidding bounds are maintained. Thus, this trick allows us to
compute the inferred social welfare function in Step 4 of the
algorithm with bounds as inputs. The remainder of Algorithm
1 remains the same (except that we operate on bounds in-
stead of exact values), and the algorithm terminates in round
T when bidders have specified at least one upper and lower
bound for all bundles they are allocated in aT .

Note that with this modification, the output of Algorithm
1 now contains bundles and upper/lower bounds (instead of
exact values). This is not yet enough information to deter-
mine an optimal allocation. Consequently, one needs an ad-
ditional refinement process that asks the bidders to refine their



Domain Mechanism # of Queries / Bidder Max # of Queries / Bidder Efficiency Revenue Deficit

GSVM VCG 218 (0) 218 (0) 100.0% (0.0%) 80.4% (0.9%) 0%
PVM 41.9 (3.8) 42.8 (7.4) 98.9% (0.1%) 77.8% (0.9%) 0%

LSVM VCG 218 (0) 218 (0) 100.0% (0.0%) 83.4% (0.8%) 0%
PVM 48.2 (3.3) 52.8 (5.5) 96.0% (0.3%) 65.6% (0.1%) 0%

MRVM
VCG 298 (0) 298 (0) 100.0% (0.0%) 44.3% (0.6%) 0%
PVM 264.5 (2.9) 625.9 (6.2) 94.6% (0.1%) 35.2% (0.7%) 0%

PVMp-4 141.1 (1.6) 302.0 (2.9) 94.0% (0.3%) 41.5% (1.1%) 0%

Table 3: Comparison between VCG and PVM in terms of number of queries, efficiency, revenue, and deficit. Standard errors are shown in
parentheses. All results are averages over 100 instances, except for PVM and PVMp-4 in MRVM, where we report averages over 50 instances.

bounds on the bundles that were elicited by the ML-based al-
gorithm until the optimal allocation can be identified.3 This
refinement process is orthogonal to the ML-based elicitation
algorithm we propose in this paper, and thus we leave this to
future work. For our experimental evaluation, we simply as-
sume we have access to a generic refinement process which,
starting from the output of our modified Algorithm 1, identi-
fies the optimal allocation. Specifically, in our experiments,
we use SATS to look up the true value of every bundle on
which an upper/lower bound was reported (i.e., “simulating”
a flawless refinement process), and we then compute the op-
timal allocation based on these true values. Thus, we only
evaluate the ability of the ML-based elicitation algorithm to
identify relevant bundles when bidders report less informa-
tion, but not the performance of a specific refinement process.

In our experiments, we generate the upper and lower
bounds as follows: for any bundle x whose value is queried
from bidder i we draw two “error measures” e1 and e2 from
a normal distribution with mean 0 and standard deviation
µ vi(x), where µ is a parameter denoting evaluation uncer-
tainty and vi(x) is the bidder’s value. The upper bound is
then vi(x)+ |e1| and the lower bound is max{v(x)−|e2|, 0}.

We report the results from running the modified elicitation
algorithm in Table 2. We see that for GSVM and LSVM there
are only slight reductions in efficiency as we increase µ. The
same applies for MRVM until µ = 1%. In general, this exper-
iment shows that the assumption that bidders can report their
precise values is not critical for the performance of our ML-
based elicitation. We defer the design of a full mechanism
using such a bounds-based query method to future work.

6.3 Evaluation of PVM
In this section, we evaluate our full PVM mechanism, which
uses our ML-based elicitation algorithm as a sub-routine (n+1
times). We evaluate PVM in terms of total number of queries
asked per bidder, allocative efficiency, revenue, and deficit, by
comparing it against VCG. The results are shown in Table 3.

We see that, despite using a very small number of queries
relative to the total number of bundles, PVM achieves more

3This means that the bounds need to be refined until we can iden-
tify an allocation with a lower bound on the reported social welfare
that is greater or equal than the upper bound on all other allocations
[see, e.g., Lubin et al., 2008].

than 94% efficiency in all domains.4 Turning to revenue,
in GSVM, PVM achieves revenue very close to what VCG
achieves. In LSVM and MRVM, the revenue under PVM is
somewhat lower than under VCG, but still positive. Finally,
we did not observe PVM to run a deficit on any instance.

PVM with Partitions. For MRVM, we also ran PVM with
partitions, using four groups of bidders (PVMp-4). Note
that our definition of PVMp in Section 4.5 left open how
to partition the bidders. For MRVM, we chose to place
one national bidder in each of the first three groups
while reserving the fourth group for all of the regional
and local bidders. This partitioning is useful in a het-
erogeneous domain such as MRVM, ensuring that no more
than one national bidder is excluded from each elicita-
tion run leading to allocation a(−i).5 This avoids a situ-
ation where

∑
j 6=i v̂j(a

(−i)) becomes too small relative to∑
j 6=i v̂j(a

pvm), yielding a small (or even negative) payment
by bidder i, thus possibly leading to a deficit.6

The results for PVMp-4 are presented in Table 3. While
PVM has good performance with only a modest number of
queries in the MRVM domain, PVMp-4 achieves almost the
same efficiency with even fewer queries. Note that, while this
reduction in queries is not large in the MRVM domain with 10
bidders, it would become significant in domains with larger
number of bidders. Finally, none of the instances in this ex-
periment ran a deficit. In fact, PVMp-4 achieves even higher
revenue than PVM. Note that this is not the intended effect of
the partitioning and not every partition will lead to a revenue
increase. In general, a revenue increase or decrease is possi-
ble depending on how exactly bidders are grouped together in
the partition.

4Note that, in each domain, PVM achieves higher efficiency than
a single elicitation run (see Table 1). This is expected because PVM
performs n+1 elicitation runs. Even though n of those runs exclude
one bidder, it is possible that those settings lead to an allocation with
higher efficiency than the setting with all bidders.

5This is possible because we use a “size four” partition and there
are only three national bidders in the standard MRVM model.

6We also tested a version of PVMp-3 where at least two
national bidders have to be excluded from at least one elicita-
tion at the same time, which often results in a deficit.



7 Conclusion
In this paper, we have introduced PVM, a new iterative com-
binatorial auction mechanism. At its core, PVM uses a ma-
chine learning-based elicitation algorithm to support bidders
in selecting which bundles to evaluate (and submit a bid for)
during the auction, without having to explore their full value
space. We have drawn on principles from VCG to design a
payment rule for PVM that aligns bidders’ incentives with al-
locative efficiency. While PVM does not provide efficiency
guarantees upon termination, we have shown experimentally
that it achieves between 94% and 99% efficiency on aver-
age in different spectrum auction domains, even with a small
number of queries. Our results give rise to promising direc-
tions for future research: First, while we have shown how
our elicitation method can be modified, allowing bidders to
only report bounds on their values, we have left a full mecha-
nism based on this bounds-based elicitation method to future
work. Second, while we have used SVRs to power our elici-
tation algorithm, future work could explore designs based on
alternative ML algorithms (e.g., using deep learning).
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