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Abstract

Despite the pervasiveness of electronic markets in our lives, only little is known about
the role of user interfaces (Uls) in promoting good performance in market domains.
How does the way we display market information to end-users, and the set of choices
we offer, influence economic efficiency? In this paper, we introduce a new research
agenda on “market user interface design.” We take the domain of 3G bandwidth
allocation as an illustrative example, and consider the design space of Uls in terms of
varying the number of choices offered, fixed vs. changing market prices, and situation-
dependent choice sets. The Ul design induces a Markov decision process, the solution
to which provides a gold standard against which user behavior is studied. We provide
a systematic, empirical study of the effect of different UTI design levers on user behavior
and market performance, along with considerations of behavioral factors including loss
aversion and position effects. Finally, we fit a quantal-best response model to users’
actions and evaluate a behaviorally-optimized market user interface.
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1. Introduction

Electronic markets are becoming more and more pervasive but a remaining research chal-
lenge is to develop user interfaces (Uls) to promote effective outcomes for users. This is
important because markets often present users with a very large number of choices, making
it difficult for users to find the optimal choice. For example, the markets for digital content
which we can access via Amazon or iTunes are growing exponentially in size. Soon, we
will have to deal with many complex markets in unfamiliar domains, and react to more
frequent price changes. The smart grid domain is a prime example for such a domain. As
we are asked to make market decisions more and more frequently, deliberation gets costly
and we cannot spend too much time on individual decisions. This is where Herb Simon’s
40-year old quote still says it best:

“...a wealth of information creates a poverty of attention...”
Herbert A. Simon (1971), pp. 40-41.

Because humans incur cognitive costs when processing information (Miller, 1956), a
wealth of information, or a wealth of choices in market environments makes attention a
scarce resource. Yet, traditional economic models assume agents to be perfectly rational,
with unlimited time and unbounded computational resources for deliberation. We address
this discrepancy by explicitly taking behavioral considerations into account when designing
market Uls. The same way that color-coded planes make the job of an air-traffic controller
easier, it is our goal to design market Uls that make economic decision making easier,
thereby improving social welfare. In this sense, our approach is in line with the “choice
architecture” idea put forward by Thaler, Sunstein and Balz (2010).

A market UI can best be defined via two questions: first, what information is displayed
to the user? Second, how many and which choices are offered to the user? Our ultimate
goal is to develop a computational method that finds the optimal market Ul, given a
behavioral user model. Using behavioral models may lead to different market Uls for
multiple reasons. For example, taking into account that users make mistakes, it may be
best not to offer some choices that can lead to particularly bad outcomes (e.g., spending
too much of your budget in one step). So far, the market design literature has largely
ignored the intersection of market design and Ul design. We argue that this intersection
is important because the complexity of the UI defines the cognitive load imposed on users.
Furthermore, the UI defines how, and how well, users can express their preferences. The
design of good market Uls is particularly important for electronic markets, where individual
decisions can often have low value (e.g., buying an article online for $0.50, or reducing your
room temperature by 1°C'), but the repeated decisions of millions of people still have a
large effect. Furthermore, electronic markets also offer an unparalleled opportunity for
market Ul design. In such market domains we often haven a wealth of information about
the individual market participants, and we can personalize market Uls, tailoring them to



the individual user’s needs and preferences. Thus, when designing an electronic market,
the design of the market’s Ul may be as important as the market’s economic design.

1.1. Overview of Results

This paper introduces a new research agenda on “market user interface design.” We first
present a systematic, empirical exploration of the effect that different UI designs have on
users’ performance in economic decision making. Then we study the automatic optimiza-
tion of market Uls based on a behavioral quantal response model. We situate our study
in a hypothetical market for 3G bandwidth where users can select the desired speed level,
given different prices and values. While there is a possibly infinite set of choices (possible
speed levels), the market UTI only exposes some finite number. As the market UI designer,
we get to decide how many and which choices to offer.

The participants of our experiments play a series of single-user games, facing a sequential
decision-making problem with inter-temporal budget constraints. We vary a) the number
of choices offered to the users (3, 4, 5, or 6), b) whether prices are fixed or dynamic, and
c¢) whether choice sets are fixed or adaptive. Additionally, we also learn a quantal response
model based on parts of the experimental data, and use computation to automatically
optimize the market Ul given the behavioral model. We then compare the behaviorally-
optimized Ul with a standard UI. Because the market Ul has a finite number of choices, the
optimization algorithm must make a trade-off between having some choices at the lower
end of the speed levels (which may be the best choice when values are low and prices are
high) and some choices at the upper end (which may be the best choice when values are
high and prices are low). Our main results are:

1. Users’ realized value increases as we increase the number of choices from 3 to 4 to 5,
with no statistically significant difference between 5 and 6 choices.

2. The realized value is higher with adaptive choice sets compared to fixed choice sets.

3. The realized value is lower when using the Ul that is optimized for behavioral play,
compared to the Ul that is optimized for perfectly-rational play.

The third result was particularly surprising and prompted a more detailed analysis of
users’ decisions. We find that our user model, based on the quantal response model, was
too simplistic, with significant negative consequences for the market Ul design. Our anal-
ysis suggests that we omitted important behavioral factors like loss aversion and position
effects. Furthermore, we identify large differences between individual users’ level of ra-
tionality. We find that for the “less rational” users there was no statistically significant
difference in realized value using the Ul optimized for rational play or optimized for be-
havioral play. However, the more rational users suffered, because the Ul optimization took
away too many of the valuable choices, making the decision problem easier, but reducing
the total realized value. Thus, this result points towards the need for personalized market
Uls that take into account each user’s individual level of rationality.



1.2. Related Work

Prior research has identified a series of behavioral effects in users’ decision making. Buscher,
Dumais and Cutrell (2010) show that the amount of visual attention users spend on different
parts of a web page depends on the task type and the quality of the information provided.
Dumais, Buscher and Cutrell (2010) show that these “gaze patterns” differ significantly
from user to user, suggesting that different Uls may be optimal for different groups of
users. In a study of the cognitive costs associated with decision making, Chabris et al.
(2009) show that users allocate time for a decision-making task according to cost-benefit
principles. Because time is costly, more complex Uls put additional costs on users.

In addition to UI complexity, emotional factors are also important in decision making.
Consider the “jam experiment” by Iyengar and Lepper (2000), which shows that customers
are happier with the choices they make when offered 6 different flavors of jam compared
to 24 different flavors. Schwartz (2005) identifies multiple reasons why more choices can
lead to decreased satisfaction, including regret, missed opportunities, the curse of high
expectations, and self blame. While emotional factors are important in many domains, in
this paper we do not aim to study them directly. Instead we focus on users’ cognitive
limitations and corresponding bounded rationality.

Some research on Uls for recommender systems addresses aspects related to our work.
Knijnenburg et al. (2012) study which factors explain the user experience of recommender
systems. Chen and Pu (2010) propose methods for dynamically changing a recommender
system Ul based on user feedback, to help users find suitable products in very large domains.
Hauser et al. (2009) present a completely automated approach for dynamically adapting
user interfaces for virtual advisory websites. They are able to infer users’ cognitive styles
based on click-stream data and then adjust the look and feel of a website accordingly.
However, in contrast to our work, their goal is to increase users’ purchase intentions, while
our goal is to help users make better decisions.

Horvitz and Barry (1995) present a framework for the design of human-computer in-
terfaces for time-critical applications in non-market-based domains. Their methodology
trades off the costs of cognitive burden with the benefits of added information. Johnson,
Payne and Bettman (1988) show that the way information is displayed (e.g., fractional vs.
decimal probability values) has an impact on user decision making. The authors briefly
discuss the implications of their findings for the design of information displays.

The work most closely related to ours is SUPPLE, introduced by Gajos, Weld and
Wobbrock (2010), who present a system that can automatically generate user interfaces
that are adapted to a person’s devices, tasks, preferences, and abilities. They formulate
the UI generation as an optimization problem and find that automatically-generated Uls
can lead to significantly better performance compared to manufacturers’ defaults. While
their approach is in line with our goal of “automatic Ul optimization,” they do not consider
a market context. They build a model of users’ pointing and dragging performance and
optimize their Uls for accuracy, speed of use, and users’ subjective preferences for Ul
layouts. In contrast, we build a behavioral user model and optimize for decision quality in



market environments where users are dealing with values, prices, and budgets.

In our own prior work (Seuken, Parkes and Jain, 2010), we have introduced the goal
of designing “hidden markets” with simple and easy-to-use interfaces. In related work
(Seuken et al., 2010a,b), we have presented a Ul for a P2P backup market, demonstrating
that it is possible to hide many of the market’s complexities, while maintaining a market’s
efficiency. Similarly, Teschner and Weinhardt (2011) show that users of a prediction market
make better trades when using a simplified market interface, compared to one that provides
the maximum amount of information and trading options. This paper is in the same vein
as this prior work, but presents the first systematic exploration of the market Ul design
space, thereby opening up a new field of empirical research.

2. The Bandwidth Allocation Game

The experiments described in this paper were conducted as part of a larger user study
on people’s experiences and preferences regarding smartphone usage.! The international
smartphone market is a Billion-dollar market with more than 100 Million users worldwide.
With an ever growing set of bandwidth-hungry applications on these phones, the efficient
allocation of 3G or 4G bandwidth is an important problem. According to Rysavy Research
(2010), the demand for wireless bandwidth will continue to grow exponentially over the next
few years and it will be infeasible for the network operators to update their infrastructure
fast enough to satisfy future demand. The common approach for addressing the problem of
bandwidth demand temporarily exceeding supply is to slow down every user in the network
and to impose fixed data usage constraints. Obviously, this introduces large economic
inefficiencies because different users have different values for high speed vs. low speed
internet access at different points in time.

Now imagine a hypothetical market-based solution to the bandwidth problem. The main
premise is that users sometimes do tasks of high importance (e.g., send an email attachment
to their boss) and sometimes of low importance (e.g., random browsing). If we assume that
users are willing to accept low performance now for high performance later, then we can
optimize the allocation of bandwidth by shifting excess demand to times of excess supply.
Figure 1 (a) shows a mock-up application for such a bandwidth market. Imagine that at
the beginning of the month each users gets 50 points, or tokens. As long as there is more
supply than demand, a user doesn’t need to spend his tokens.? However, when there is
excess demand and the user wants to go online, then a screen pops up (as shown in Figure 1
(a)), requiring the user to make a choice. Each speed level has a different price (in tokens).
For simplicity, we assume that when a user runs out of tokens, he gets no access or some

"While future experiments will show how our results translate to other domains, it is important to note
that the four design levers we study constitute within-experiment variations. Thus, any change in
behavior can be attributed to changes in the UI and are likely not specific to this domain.

2Throughout this paper, when referring to “users”, we always mean male as well as female users, but to
simplify the language, we only use “he” and “his.”



Time Rounds Tokens Score

4sfTs 2/6 9/30 $15

Speed: 1000 KB/s
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Price: 10 Points = ——

High Importance

Speed: 300 KB/s
Price: 3 Points

Speed: 200 KB/s
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Price: 8 Tokens
Speed: 0 KB/s
Price: 0 Points e oD KB

Value: - 50.5- 80.2

Price: 3 Tokens

Speed: 0 KBls
Value: - $05-$0.7
Price: 0 Tokens

(a) (b)

Figure 1: (a) Mockup of the bandwidth market UL (b) Screenshot of the market game used
in the experiments.

very slow connection.? This domain is particularly suitable to studying market Uls because
we can easily change many parameters of the Ul, including the number of choices, whether
prices stay fixed or keep changing, and the particular composition of the choice set.

2.1. Game Design

Figure 1 (b) shows a screenshot of the market game we designed for our experiments,
mirroring the mockup of the market application, except that now the value for each choice
is no longer private to each user, but explicitly given to the user. Note that this is a single-
user game on top of a simulated market domain. Fach game has 6 rounds, and the user has
a fixed budget of 30 tokens that he can spend over the course of the 6 rounds. In addition
to the current round and budget, the state of the game is determined by the current set of
values and associated prices of all available choices, and those change stochastically from
round to round.

In each round of the game, the user has to select one of the choices. Each choice (i.e.,
a button in Figure 1 (b)) has three lines: the first line shows the speed of that choice in
KB/s. The second line shows the value of that choice in dollars (as a sum of two values).
The value represents the dollar amount that is added to a user’s score when that choice

3In this paper, we do not concern ourselves with different business models or market designs for this
domain. In particular, we do not address the question whether users should be allowed to pay money
to buy more tokens. We do not suggest that this particular business model of using a fixed number of
tokens per month should be adopted. Instead, we merely use this hypothetical market application as a
motivating domain for our experiments into market Ul design.



is selected. The third line shows the price of that choice in tokens. Note that to play the
game optimally, the user only needs to know the values and the prices of each choice, but
not the speeds. However, we also include the speed information to label the buttons such
that it is easier for users to recognize what has changed in the current round (e.g., values
and/or prices). When the user selects a particular choice, the corresponding number of
tokens is subtracted from his budget and the corresponding value is added to his score
which is displayed in the top right corner of the window. The score after the 6th round is
the final score for the game.

Next to the score is a label displaying the user’s current budget, which always starts
at 30 in round 1 and then goes down as the user spends tokens. With the user’s budget
decreasing during a game, choices that have a price higher than the user’s current budget
become unavailable and are greyed out (as is the case for the top choice in Figure 1 (b)).
To the left of the user’s budget, the game shows the number of rounds that are left until
the game is over. Finally, at the very left of the window, we show the user how much
time he has left to make a decision in this particular round (e.g., in Figure 1 (b) the user
still has 4 seconds left to make a decision in the current round). We put users under time
pressure to induce a certain error rate that allows for a meaningful comparison of different
market Uls. To have a reasonably high error rate even for easy games (e.g., with just three
choices), we display the value of each choice as a sum of two values. This induces extra
cognitive effort and thus leads to a higher error rate.

In every round, the user is in one of three task categories (high importance, medium
importance, and low importance), which is displayed in the task category label. Every
round, one of these three categories is chosen randomly with probability 1/3. Note that
this corresponds to the original premise that users are doing tasks of different importance at
different points in time. The task category determines the values of all choices. Effectively,
the user has three concave value functions that map bandwidth levels to values. Table 1
shows an overview of the values the user can expect in the three categories for a game with
4 choices. As one would expect, selecting the higher speed choices in the “high importance”
category gives the user a very high value, while choosing low speeds in the high importance
category leads to a severe penalty. In contrast, in the “low importance” category the user
can earn less value for selecting high speeds, but is also penalized less for selecting the
lowest speed. However, the values shown in Table 1 are only the averages of the values in
each category. In every round, the actual value for each choice is perturbed upwards or
downwards with probability 1/3, to introduce additional stochasticity in the game. This
avoids that users can memorize a fixed set of values for each task category, and also rules
out that simple heuristics led to near-optimal game play.

The user’s problem when playing the game is to allocate the budget of 30 tokens optimally
over 6 rounds, not knowing which values he will face in the future. For some experimental
treatments, we also randomly vary the prices charged for each of the choices from round to
round. Thus, the user may also have uncertainty about which price level he will be facing
next. This problem constitutes a sequential decision making problem under uncertainty.



H High Imp. ‘ Medium Imp. ‘ Low Imp ‘

900 KB/s $1.7 $1.1 $0.4
300 KB/s $0.5 $0.2 -50.2
100 KB/s | -$0.3 -$0.3 - 50.5

0 KB/s ~$1 -50.9 - $0.8

Table 1: The Values in the 3 different Task Categories

We calibrated the game (i.e., the size of the budget, the nominal values of the choices, the
prices, the number of rounds, etc.) in such a way that random play has a highly negative
expected score, but such that optimal play leads to an average score between $0.50 and
$1.30 (depending on the particular experimental treatment). Thus, to play the game well
and achieve positive scores, the users had to exert significant cognitive effort and properly
take the multi-step stochastic nature of the game into account.

2.2. MDP Formulation and Q-Values

Each game can formally be described as a finite-horizon Markov Decision Problem (MDP)
without discounting (Puterman, 1994):

e State Space: CurrentRound x CurrentBudget x CurrentCategory x CurrentVal-
ue Variation X CurrentPriceLevel.

e Actions: Each choice affordable in the current round given current budget.
¢ Reward Function: The value of each choice.

e State Transition: The variables CurrentRound, CurrentBudget, and CurrentScore
transition deterministically given the selected choice. The other variables Current-
Category, CurrentValueVariation and CurrentPriceLevel transition stochastically.

The largest games we consider have approximately 7 million state-action pairs. Using
dynamic programming, we can solve games of this size quickly (in less than 20 seconds).
Thus, we can compute the optimal MDP policy, and we always know exactly which choice
is best for each possible situation (game state) that can arise. Note that this policy is, of
course, computed assuming that the future states are not known; only the model and the
transition probabilities as described above are known.

Solving the MDP involves the computation of the Q-values for each state-action pair.
For every state s and action a, the Q-value Q(s,a) denotes the expected value for taking
action a in state s, and following the optimal MDP policy for every subsequent round.
Thus, the optimal action in each state is the action with the highest Q-value, and by
comparing the differences between the Q-values of two actions, we have a measure of how
much “worse in expectation” an action is, compared to the optimal action.



2.3. The Quantal-Response Model

A well-known theory from behavioral economics asserts that agents are more likely to make
errors the smaller the cost for making that error. This can be modeled formally with the
quantal response model (McKelvey and Palfrey (1995)) which predicts the likelihood that
a user chooses action a; in state s to be:

e)"Q(svai)

Yjsg el

P(a; | s) =

where n denotes the total number of actions, @Q(s,a;) denotes the Q-value of action
a; in state s, and A > 0 is a precision parameter indicating how sensitive users are to
differences between Q-values. A = 0 corresponds to random action selection, and A = oo
corresponds to perfectly-rational action selection, i.e., always choosing the optimal action.
Based on experimental results, one can compute a maximum-likelihood estimate for A,
i.e., maximizing the likelihood of the observed data. Equipped with a particular A, this
constitutes a user model which we use to optimize the UI for behavioral play (see Wright
and Leyton-Brown (2010) for a comparison of behavioral models).

3. Experiment Design

Before we discuss the experiment design, let’s briefly pause to understand what exactly is
within the control of the market Ul designer, and what is not. Remember that in theory,
there is an infinite set of choices (possible speed levels), but we assume that any market
UI can only expose a small, finite number of choices to the user. The UI designer decides
1) how many choices and 2) which exact choices to offer. For example, as in Figure 1 (b),
we can provide 4 choices, i.e., 0 KB/s, 100 KB/s, 300 KB/s, and 900 KB/s. Alternatively,
we could provide 3 choices, for example 0 KB/s, 500 KB/s, and 1000 KB/s. Note that by
picking the choices, we only choose the market interface; the user’s value function which
maps speed levels to values doesn’t change. Of course, higher speed levels have a higher
value for the user, but they also have a higher price.

In addition to the constraint of having a fixed number of choices, we also require the
choice set to be fixed ex-ante and stay fixed throughout a game. In particular, the choices
cannot depend on the state of the game (round, budget, category, value variation, price
level). There is one exception to this rule, namely in the Adaptive Choice Set treatment,
where we specify not one but three different Uls, one for each category high, medium, and
low (we discuss this design lever in more detail in Section 4.2).

Thus, except in the Adaptive Choice Set treatment, the Ul remains fixed for the 10 to
15 games that users play per treatment. For example, in the treatment with 5 choices, the
user gets the same 5 choices in every round. Of course, in each of the possibly millions
of different game states, a different choice is optimal. If the user could choose his speed
freely, perhaps the optimal speed in some state would be 378 KB/s. But our Uls only offer



a fixed, finite number of choices. Of course, despite this constraint, for every state in the
game, one of the available choices is still the best, and by solving the MDP we know which
one it is. But in the real world, a UI designer would also only get to pick one UI (possibly
knowing a distribution over situations a user will be in). We as the experimenters adopt
the same viewpoint: we select one fixed Ul, knowing the distribution of game states that
a user will encounter, but we cannot change the Ul during a game.

3.1. Design Levers
We study the following four market Ul design levers:

1. Number of Choices: This design lever describes how many choices (i.e., the number
of buttons) are available to the users (3, 4, 5, or 6).

2. Fixed vs. Dynamic Prices: In the fized price treatment, each choice always costs a
fixed number of tokens (2 tokens per 100KB/s). With dynamic prices, one of 3 price
levels is chosen randomly with probability 1/3 in each round, where the price per 100
KB/s is either 1, 2, or 3 tokens (thus, 500KB/s cost either 5, 10, or 15 tokens).*

3. Fixed vs. Adaptive Choice Sets: In the fized choice set treatment, the users
always have the same set of choices available to them in every round (e.g., always 0
KB/s, 100 KB/s, 300 KB/s, and 900KB/s). In the adaptive choice set treatment,
the decision within the UI design as to which choices to offer is allowed to vary with
the category (e.g., in the high category, more high speed choices may be available; in
the low category, more low speed choices may be available).

4. Rational vs. Behavioral Ul Optimization: This design lever describes which
method is used to determine the composition of the choice sets (i.e., fixing the num-
ber of choices, which particular speed levels are available to users). In the Rational-
Optimization treatment, the choice sets are optimized based on the MDP model as-
suming perfectly rational play. In the Behavioral-Optimization treatment, the choice
sets are optimized assuming behavioral play according to the quantal response model.

3.2. Methodology and Experimental Set-up

We recruited 53 participants (27 men, 26 women) from the Seattle area with non-technical
jobs. All participants had at least a Bachelors degree and we excluded participants who
majored in computer science, economics, statistics, math, or physics. They were fluent
English speakers, had normal (20/20) or corrected-to-normal vision, and were all right-
handed. All of them used a computer for at least 5 hours per week. Their median age

4The motivation for testing this design lever is that in some domains, balancing supply and demand may
be possible with other means than dynamic prices. However, a detailed discussion of this idea is beyond
the scope of this paper. We also don’t analyze this particular design lever in this paper.
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was 39, ranging from 22 to 54. None of the participants worked for the same company,
but all of them had some familiarity with smartphones. We ran one participant at a
time with each session lasting about 1.5 hours. The users first filled out a pre-study
questionnaire (5 minutes). Then they went through a training session where the researcher
first explained all the details of the game and then gave them the opportunity to play
6 training games (15 minutes). After the training was over, they participated in the
experiment (55 minutes) and finally completed a post-study survey (10 minutes). The
participants were compensated in two ways. First, they received a software gratuity that
was independent of their performance (users could choose one item from a list of Microsoft
software products). Second, they received an Amazon gift card via email with an amount
equal to the total score they had achieved over the course of all games they had played. The
expected score for a random game, assuming perfect play, was between $0.50 and $1.30,
depending on the particular treatment. With random action selection, the expected score
was highly negative. After each game, we showed the users their score from the last game
and their accumulated score over all games played so far.” The final gift card amounts of
the 53 users varied between $4.60 and $43.70, with a median amount of $24.90.

3.3. Time Limits

To study the effect of the UI design on a user’s ability to make economic decisions we need
a reasonably complex decision problem, such that it is neither too easy nor too difficult
for users to find the optimal decision. We achieve this by making decision time a scarce
resource, as prior research has shown that users make worse decisions when under time
pressure (Gabaix et al., 2006). We impose an exogenous time limit of 12 (7) seconds
per round. If a user doesn’t make a choice within this time limit, the lowest choice (with
0KB/s for 0 tokens and a highly negative value) is chosen, and the game transitions to the
next round. The time resets in every round. To warn the user, the game starts beeping
three seconds before the end of a round. Note that the time limits of 12 and 7 seconds
respectively were carefully chosen after a series of pre-test. In those pre-tests we had found
that having between 7 seconds and 12 seconds put most of the users under enough time
pressure such that it was difficult for them to find the optimal choice, but still gave them
enough time to process enough of the available information such that they could play the
game reasonably well.

In addition to the games with a fixed time limit (7 and 12 seconds), the users also played
a series of games with an endogenous time limit. They had 240 seconds to play many
games repeatedly; once a user finished one game, there was a 15 second break, and then the
next game started. Thus, the cost for spending more time on a decision was internalized
by the participants. We used this time treatment to study the effect of fixed vs. dynamic
prices on decision time. However, we do not discuss this aspect in this paper.

5Qriginally, we had 56 participants in our study. However, in our analysis, we excluded the data from 3
participants (2 males, 1 female) because their accumulated score was more than two standard deviations
away from the mean of the accumulated score in their treatment group.
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Number Of Choices \ Seconds per Game H 12 seconds | 7 seconds | 240 seconds

3 4 x 4 x 1 x
4 4 x 4 x 1 x
) 4 x 4 x 1 x
6 4 X 4 x 1 x

Table 2: Design of Experiment 1. Each participant played between 40 and 50 games. The
design lever Number of Choices was a within-subject factor, the design lever Fized
vs. Dynamic Prices was a between-subjects factor.

3.4. Treatment Variations

The study was split into two separate experiments. Experiment 1 involved 35 participants,
and we tested the design levers Number of Choices (within-subject factor) and Fized vs.
Dynamic Prices (between-subject factor). Table 2 depicts the experiment design for each
individual user. We randomized the order in which the users played the games with 3, 4,
5, or 6 choices. For each of those treatments, every user started with the four 12-second
games, then played the four 7-second games, and then the 240-second endogenous time
game. In Experiment 2 we had 18 participants and we tested the design levers Fized vs.
Adaptive Choice Sets and Rational vs. Behavioral Ul Optimization (both within-subject
factors). Here, all games had four choices and dynamic prices. See Table 3 for a depiction
of the experiment design for each individual participant. Again, we randomized the order
of the treatments.

3.5. Computational Ul Optimization

For a fair comparison of different market Uls (e.g., one with 4 choices vs. one with 5 choices),
we chose each of these Uls optimally, given the constraints imposed by the treatment. The
only choice that was always included was the 0 KB/s choice (for 0 tokens). Here, “op-
timally” means that we selected the one fixed Ul with the highest EzpectedOptimalValue
given the MDP model (i.e., distribution of game states). To make this optimization compu-
tationally feasible, we discretized the search space, with 100KB/s being the smallest unit.
Our search algorithm took as input the design parameters (e.g., 3 choices and optimized
for rational play), iterated through all possible combinations of choices (i.e., all possible
combinations of speed levels), solved the resulting MDP for each combination, and output
the UI with the highest ExpectedOptimalValue. Note that the optimization algorithm au-
tomatically makes a trade-off between having some choices at the lower end of the speed
levels (e.g., 200 KB/s which may be the best choice when values are low and prices are
high) and some choices at the upper end of the speed levels (e.g., 900 KB/s which may be
the best choice when values are high and prices are low). In particular, this means that for
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Treatment Variation \ Seconds per Game H 12 seconds | 7 seconds | 240 seconds

Fixed Choice Sets & Rational Optimization 4 x 4 x 1 x
Adaptive Choice Sets & Rational Optimization 4 x 4 x 1 x
Fixed Choice Sets & Behavioral Optimization 4 x 4 x 1 x
Adaptive ChoiceSets & Behavioral Optimization 4 x 4 x 1 x

Table 3: Design of Experiment 2. Every participant played between 40 and 50 games. Both
design levers Fixzed vs. Adaptive Choice Sets and Ul Optimization were within-
subject factors.

a particular game state, the “theoretically optimal” choice for that state (if all affordable
speed levels were available) will not always be among the set of offered choices. Using this
UI optimization approach, we guarantee that for every particular set of design criteria, we
present the user with the best possible UI given the constraints.

3.6. Hypotheses

The larger the number of choices, the higher the expected value of the game assuming
optimal play. Yet, Malhotra (1982) has shown that information overload leads to poorer
decisions. We hypothesized that at first, the benefit from having more choices outweighs
the additional cognitive load (H1), but that as the number of choices gets large, the added
cognitive costs become the dominant factor (H2). Similarly, using AdaptiveChoiceSets
tailors the available choices to the particular task category, which should make the decision
easier for the user. On the other hand, the fact that the choices may change from round
to round might also make it harder for users to find the optimal one. We hypothesized
that the overall effect is positive (H3). Finally, the behavioral optimization changes the
composition of the choice set. In particular, it may eliminate some choices that may be
useful in some game states because the behavioral model deems them as too risky. Thus, a
user might suffer without those choices, or he might benefit, because the risky choices are
eliminated. We hypothesized that the overall effect is positive (H4). To summarize, our
four hypotheses are:

H1: The realized value increases as we increase the number of choices.

H2: The realized value first increases as we increase the number of choices, but
ultimately decreases.

H3: The realized value is higher when using adaptive choice sets, compared to
using fized choice sets.

H): The realized value is higher when using behavioral optimization, compared
to using rational optimization.
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Figure 2: Mean values for 3, 4, 5, and 6 choices, in the games with (a) fixed prices, and (b)
dynamic prices. The blue line (on top) corresponds to ExpectedOptimalValue.
The green line (on the bottom) corresponds to Realized Value.

4. Experimental Results

In this section, we describe the results regarding our hypotheses. As the regression tech-
nique we use Generalized Estimating Equations (GEE), an extension of generalized linear
models, that allow for the analysis of correlated observations (Nelder and Wedderburn,
1972). This gives us consistent coefficient estimates with robust standard errors despite
using repeated measures from individual users.

4.1. Number of Choices

The first design lever we analyze is NumberOfChoices. We measure the effect of this design
lever by analyzing the dependent variable Realized Value, which is a randomness-adjusted
version of the user’s total score per game (see Appendix Section A for details). For this
analysis, we study the games with fized prices and with dynamic prices separately. Consider
first the two graphs in Figure 2. In each graph, the blue line (on the top) represents the
game’s ExptectedOptimalValue, and the green line (at the bottom) represents the users’
average RealizedValue. For the games with fixed prices (on the left), the graph suggests
that the user’s realized value first increases as we go from 3 to 4 to 5 choices, but then
decreases again as we go from 5 to 6 choices (however, note the large and overlapping
error bars). For the games with dynamic prices (on the right), the effects are more clear.
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| Factors/Covariates | (1) \ (2) | | Factors/Covariates | (1) \ (2) ‘
0.368%FFFF | (), 343FF%* 0.379%FFFF | ().326%F**
Intercept (0.0275) | (0.0371) | | Tercept (0.0650) | (0.0859)

. 0.04 0.040 . 0.330%FF% | (0.326%F**
NumChoices=6 (0.0337) | (0.0331) NumChoices=6 (0.0740) | (0.0725)

. 0.075%% | 0.077%% . 0.320%FF% [ (). 320FF*%
NumChoices=5 (0.0342) | (0.0332) NumChoices=5 (0.0609) | (0.0610)

. 0.018 0.015 . 0.131% 0.128%
NumChoices=4 (0.0279) | (0.302) NumChoices=4 (0.0740) | (0.0670)
NumChoices=3 0 0 NumChoices=3 0 0
12-SecondGame (00'0020437) 12-SecondGame (00'0041186)

0.001 0.002
GameCounter (0.0007) GameCounter (0.0017)
[ Model Fit (QICC) | 43.635 [ 47515 | | Model Fit (QICC) [ 103.104 | 106.727 |

(a) Games with fixed prices (b) Games with dynamic prices

Table 4: GEE for the dependent variable Realized Value, studying the effect of NumChoices
and controlling for 12-SecondGame and GameCounter. Standard errors are given
in parentheses under the coefficients. The individual coefficient is statistically
significant at the *10%level, the **5% level, the ***1% level, and at the ****0.1%
level.

The realized value increases a lot as we go from 3 to 4 to 5 choices, and then essentially
plateaus as we go from 5 to 6 choices. One possible explanation for the effect we are seeing
when going from 5 to 6 choices is that the disadvantage from adding more cognitive load
outweighs or at least roughly equals the theoretical benefits of having one more choice
available. For more insights, we now turn to the statistical data analysis.

Consider Tables 4 (a) and (b), where we present the results of the regression analysis. The
coefficients for NumChoices are with respect to NumChoices=3. In Table 4 (a) column (1),
we see that the coeflicients for NumChoices=/4 and NumChoices=5 are positive, and the
coeflicient for NumChoices=5 is statistically significant at p < 0.05. Thus, increasing the
number of choices has a statistically significant positive effect on the users’ realized value.
While the coefficient for numChoices=6 is smaller than for numChoices=5, indicating
a decrease in the realized value, we have verified that this decrease is not statistically
significant (p = 0.246).

Now, consider Table 4 (b) column (1), where we present the same analysis for the games
with dynamic prices. Here we see that the coefficients for NumChoices=4, NumChoices=5,
and NumChoices=6 are also all positive and all are statistically significant (p < 0.1 for 4
choices, and p < 0.001 for 5 and 6 choice). Furthermore, the coefficient for NumChoices=6
is slightly larger than the coefficient for NumChoices=5, but this effect is not statistically
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significant (p = 0.645). Thus, for the game with fixed prices, increasing the number of
choices definitely increases the user’s realized value, but the effect plateaus when moving
from 5 to 6 choices.

In column (2) of Table 4 (a) and (b) respectively, we add the two covariates 12-
SecondGame and GameCounter to the analysis to test the robustness of the results (adding
them separately to the regression leads to the same qualitative results) The covariate 12-
secondGame indicates whether the user was playing a 7-second or a 12-second game. How-
ever, we see that it has no statistically significant effect on the realized value, which may
be due to the fact that in each treatment, the users always started with four 12-second
games before playing four 7-second games. Thus, by the time they played the 7-second
games they already had more practice. We also add the covariate GameCounter to the
analysis, which represents the number of games the user has already played up to that
point in the overall experiment, and thus controls for possible learning effects. We see
that this covariate has no statistically significant effect as well. Obviously, moving from
12-second games to 7-second games makes the game more difficult, while learning effects
should make the game easier for the user over time. If either of those effects was present,
our analysis suggests that they cancel each other out. Note that while adding those covari-
ates, the results regarding NumChoices remain qualitatively unchanged. Thus, we obtain
the following results regarding Hypotheses 1 and 2:

Result 1 (Number of Choices). We reject the null hypothesis in favor of HI, i.e., the
realized value per game significantly increases as we increase the number of available choices
from 8 to 4 to 5. Regarding H2, we cannot reject the null hypothesis. While for the games
with fized prices, the realized value per game seems to decrease as we go from 5 to 6 choices,
this effect is not statistically significant. Furthermore, for games with dynamic prices, the
realized value seems to plateau at 5 choices. While we observe a minimal increase in realized
value when moving from 5 to 6 choices, this effect is not statistically significant.

4.2. Fixed vs. Adaptive Choice Sets

We now move on to the analysis of the data from Experiment 2 where we studied the two
design levers Fized vs. Adaptive Choice Sets, and UlOptimization. For this experiment,
we fixed the number of available choices to four and only considered dynamic prices. The
design lever Fized vs. Adaptive Choice Sets is based on the idea that we would like to
present users with different choice sets in different situations. While an intelligent agent
can never truly know a user’s current value for high bandwidth, in some domains like the
smartphone domain, we get a lot of signals from the user over time that can be used as
input to a learning algorithm. Thus, we could learn a mapping from context to a value
estimate. For example, when a user is currently listening to Internet radio then he may
be more likely to choose a high bandwidth choice when presented with the bandwidth
market Ul, compared to situations when he is updating his Facebook status. Over time,
the application could learn this behavior, inferring that the user has a higher value for
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Time Rounds Left Tokens Score Time Rounds Left Tokens Score Time Rounds Left Tokens Score
bsf7s 6/6 30/30 50 bsf7s 6/6 30/30 50 6s/7s 6/6 30/30 30
Task Category Task Category Task Category
Low Importance Medium Importance High Impertance

Speed: 400 KBfs Speed: 600 KB/s Speed: 1000 KBls
Value: - $0.1-$0.0 Value: $0.4 + $0.4 Value: $1.1+350.7
Price: 8 Tokens Price: 12 Tokens Price: 20 Tokens

Speed: 200 KBls Speed: 200 KB/s Speed: 400 KB/s
Value:-$0.2-30.1 Value: 0.0 + $0.1 Value: $0.4 + $0.4
Price: 4 Tokens Price: 4 Tokens Price: 8 Tokens
Speed: 100 KBis Speed: 100 KBis Speed: 200 KB/s
Value:-$0.1-$0.4 Value: - $0.1-$0.2 Value: $0.0 + $0.0
Price: 2 Tokens Price: 2 Tokens Price: 4 Tokens
Speed: 0 KBis Speed: 0 KBls Speed: 0 KBls
Value:-$0.3-30.4 Value: - $0.5- $0.1 Value: - $0.6- 30.6
Price: 0 Tokens Price: 0 Tokens Price: 0 Tokens

Figure 3: Adaptive Choice Sets: 3 different screenshots demonstrating the adaptive choice
set idea. The users are offered a different set of choices (i.e., speed levels) de-
pending on the current task category.

bandwidth when using the radio application. Thus, when presenting the user with the
market Ul in such a high-value situation, the application could then offer the user more
choices at the higher end of the bandwidth spectrum and fewer choices at the lower end,
enabling the user to make even more fine-grained decision.

The algorithm for finding the “optimal adaptive choice sets” works similarly as described
before, except that now the algorithm takes into account that the choice set composition
can be different for each category (i.e, the design space has grown cubically). Consider
Figure 3 where we display three different screenshots, illustrating the three different choice
sets offered to the user for the three different categories. We see that, as expected, the
optimal choice sets include more low speed choices for low value categories, and more high
speed choices for high value categories. Thus, on the one hand, the choices are now better
tailored to the individual decision situation. On the other hand, the user now has to deal
with the fact that the choices available to him (and thus also the prices) keep changing
every round. The question is whether both effects taken together are positive or negative
for the user’s Realized Value.

Consider Tables 5 (a) and (b), where we compare the optimal value of the game with
the average value realized by the users. In this analysis, we separate the games without
behavioral optimization from those with behavioral optimization. We see that in both
cases, the optimal value of the game slightly increased when going from fixed to adaptive
choice sets. This was expected, because the choice sets are now tailored to the three states
low tmportance, medium importance, and high importance. However, while the optimal
value of the game only increased by 0.02 in both cases, we see that the average realized
value increased much more, by 0.12 and 0.04 in cases (a) and (b) respectively. Thus,
presenting the users with adaptive choice sets had a positive effect on the realized value,
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Optimal | Realized Optimal | Realized
Value Value Value Value
fixed choice sets 1.01 0.44 fixed choice sets 0.77 0.37
adaptive choice sets 1.03 0.56 adaptive choice sets 0.79 0.41

(a) Without behavioral optimization (b) With behavioral optimization

Table 5: Optimal Values and Realized Values.

over and above the effect of just increasing the game’s optimal value. To see if this effect is
also statistically significant, we must must look at the difference between optimal value and
realized value, and analyze whether the decrease in this difference is statistically significant.
Now consider Tables 6 (a) and (b), where we show the results of fitting the GEE to
the data of Experiment 2, where the dependent variable is Optimal ValueMinusRealized-
Value. We see that the coefficient for AdaptiveChoiceSets? is negative (i.e., reducing the
difference), but only statistically significant in case (a), i.e., for the games without be-
havioral optimization (p < 0.1). Thus, the data provides evidence that using adaptive
choices indeed increased the users’ average Realized Value, over and above the positive ef-
fect on the optimal value. Apparently, the negative effect of having more variability was
significantly smaller than the positive effect of being able to make better decision, as the
available choices are better tailored to the specific situations. However, the effect was only
statistically significant in case (a), and even there only with a relatively small statistical
significance. Thus, we must be cautious when drawing conclusions based on this result.

Result 2 (Fixed vs. Adaptive Choice Sets). We reject the null hypothesis in favor of
H3, i.e., the realized value is significantly higher with adaptive choice sets, compared to
fized choice sets. Howewver, the effect is only statistically significant in the games without
behavioral optimization, and even there, the significance is relatively low (p = 0.098).

| Factors/Covariates | (1) | [ Factors/Covariates | (1) ‘
0.5667HH** 0.404#%**
Intercept (0.0578) Intercept (0.0398)
-0.090* -0.024
. . o . . o
AdaptiveChoiceSets? (0.0376) AdaptiveChoiceSets? (0.0442)

65.534

| Model Fit (QICC) | | | Model Fit (QICC) [ 45215 |

(a) Without behavioral optimization  (b) With behavioral optimization

Table 6: GEE for dependent variable OptimalValueMinusRealized Value, studying the effect
of AdaptiveChoiceSets. Standard errors are given in parentheses under the coeffi-

cients. The individual coefficient is statistically significant at the *10% level, the
**5% level, the ***1% level, and at the ****0.1% level.
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Market User Interface

+

User Experiment

Time Rounds Left Tokens Score
5sf7s 6/6 30/30 S0

Time Rounds Left Tokens Score

bsf7s 6/6 30/30 S50

Task Category
High Importance

Task Category
Medium Importance

) 7 Speed. 900 KBls Speed: 400 KBIs
Learning Algorithm Value: 505+ 513 Value: 50.3 +50.2
Price: 27 Tokens Price: 12 Tokens
Speed: 300 KBls Speed: 300 KBis
User Model Value: 50.1 + 504 Value: 50.2 +$0.0
Price: 9 Tokens Price: 9 Tokens
. . N Speed: 100 KBfs Speed: 100 KBis
Optimization Algorithm Value: - $0.0-30.2 Value: - 50.1-50.0
Price: 3 Tokens Price: 3 Tokens
. Speed: 0KBIs Speed: 0 KBIs
Optimized Market Value: -$0.4-$0.3 Value: - 50.5-50.1
User |nterface Price: 0 Tokens Price: 0 Tokens

(a) (b) (c)

Figure 4: (a) Market UI Optimization Method. (b) A sample UI optimized assuming per-
fectly rational play. (c) A sample Ul optimized assuming behavioral play.

4.3. Ul Optimization for Rational vs. Behavioral Play

For the design lever UIOptimization we compare two different Uls, one optimized for per-
fectly rational play, and one optimized for behavioral play. For the behavioral optimization,
we first built a behavioral model based on the data from Experiment 1. We computed dif-
ferent likelihood-maximizing A-parameters for the quantal response model depending on 1)
the total number of choices in the particular game, 2) the number of choices left in a par-
ticular round, and 3) whether prices were fixed or dynamic. Then we solved the resulting
MDP, where now Q-values are computed assuming that the user will follow the “behavioral
strategy” when playing the game. Finally, we selected the Ul with the highest expected
value according to this “behavioral MDP.” Figure 4 (a) shows a diagram illustrating our
market Ul optimization methodology.

To get some intuition for what happens under behavioral optimization, consider Figures
4 (b) and (c) where we display two sample Uls, one optimized for perfectly rational play,
and one optimized for behavioral play. Note that both Uls are the result of a computational
search algorithm. The only difference between the two Uls is the top choice: the UI that
was optimized for perfectly rational play gives the user the 900KB/s choice, while the UI
that was optimized for behavioral play gives the user the 400KB/s choice. This result is
understandable in light of how the UI optimization algorithm works and the behavioral vs.
optimal user model. The quantal response model assigns each action a certain likelihood
of being chosen, corresponding to the Q-values of those actions. Now, consider the top
choice in Figure 4 (b), which has a high value, but which can also cost between 9 and 27
tokens (this is a game with dynamic prices). Thus, in the worst case, the user spends 27
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’ Factors/Covariates \ (1) ‘ ’ Factors/Covariates \ (1) ‘

0.444%3** 0.558%***
Intercept (0.0578) Intercept (0.0470)
-0.075 -0.148%*#4*
. Lo . Lo
BehavioralOptimization? (0.0545) BehavioralOptimization? (0.0366)
| Model Fit (QICC) | 63.060 | | Model Fit (QICC) | 45.688 |
(a) With fixed choice sets (b) With adaptive choice sets

Table 7: GEE for dependent variable Realized Value, studying the effect of BehavioralOp-
timization. Standard errors are given in parentheses under the coefficients. The

individual coefficient is statistically significant at the *10% level, the **5% level,
the ***1% level, and at the ****0.1% level.

out of his 30 tokens with one click, and then has only 3 tokens left for the remaining 5
rounds. Even if it is very unlikely that the user selects this action, the negative effect of
an occasional mistake would be very large. Consequently, the Ul optimized for behavioral
play shown in Figure 4 (c¢) does not have such high-value high-cost choices, reducing the
negative effect of mistakes.

Now, consider Tables 7 (a) and (b) where we show the effect of the design lever Be-
havioralOptimization? on the dependent variable Realized Value, separated into the two
cases with fixed choice sets and with adaptive choice sets. First, we see that the coefficient
for BehavioralOptimization? is negative in both cases, and highly statistically significant
(p < 0.001) in case (b). Thus, the UI optimization assuming behavioral play did not have
a positive but a negative effect on Realized Value, and we obtain the following result:

Result 3 (UI Optimization). We cannot reject the null hypothesis in favor of H4. Instead,
we find that using the behaviorally optimized Ul leads to a realized value which is not higher
but lower compared to using the UI optimized for rational play. This effect not statistically
significant for the games with fized choice sets, but it is highly statistically significant for
the games with adaptive choice sets.

This result is very surprising, in particular that the behavioral UI optimization had
a negative effect on RealizedValue. Upon finding this result, we hypothesized that the
quantal response model was too simple for a Ul optimization in our domain, ignoring some
important behavioral factors. Given prior behavioral research, possible candidate factors
were loss aversion and position effects. The goal of the analysis in the next section is to
find empirical support for our hypothesis that behavioral factors which we omitted in our
UI optimization had a significant impact on users’ decisions.
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5. Behavioral Decision Analysis

In this section, we analyze users’ individual actions in each round of a game to understand
which behavioral factors influence users’ decision making. To simplify the analysis of this
round-based data, we study the binary dependent variable OptChoice, which is 1 if the user
clicked on the optimal choice, and 0 otherwise. The analysis in this Section is only based
on data from Experiment 1 (see Appendix Section B for details on the data set). Note
that there is no widely accepted definition of standardized coefficient estimates for logistic
regression models. Thus, when reporting regression results using the logit link function,
we only report the non-standardized coefficient estimates B and the corresponding odds
ratios Exp(B).

5.1. User-specific Factors: Degree of Rationality

We first test whether individual users exhibit significant differences in their play according
to the quantal response model. We compute a separate maximum-likelihood parameter \;
for each user i. This parameter can be seen as measuring how “rational” a user’s play was.
In fact, the users exhibited large differences, with a minimum X of 3.9, a maximum of 9.0,
and a median of 6.8. Table 8 presents the regression results for OptChoice. In column (1),
we see that the parameter Lambda has a statistically significant effect (p < 0.001). Looking
at the odds ratio (Exp(B)), we see that the odds of choosing the optimal choice are 16%
higher for a user with A = z compared to a user with A = z — 1. Thus, for the analysis of
OptChoice it is important to control for A.

We also analyzed two other user-specific factors: Age and Gender. There was no statisti-
cally significant effect of Age on either OptChoice or RealizedValue. For Gender, there was
no effect with respect to Realized Value, but there was a small statistically significant effect
(p < 0.1) on Optchoice: female users were slightly more likely to miss the optimal choice,
but male users made bigger mistakes when they missed the optimal choice. However, the
factor Lambda already captures user-specific cognitive differences, and thus we do not need
to also control for Gender in the regression analyses.

5.2. Q-Value Differences

We now analyze the factor QualueDiff which denotes the difference between the Q-values
of the best and second-best action. In column (2) in Table 8 we see that QualueDiff is
statistically significant (p < 0.001) with an odds ratio of 354. Note that this is the odds
ratio for a one unit change in the Q-value difference. Yet, in our data, the mean of the
Q-value difference is 0.11. The odds ratio for a change of 0.1 is 1.8. Thus, holding Lambda
constant, if the Q-value difference between the best and second-best choice increases by
0.1, the odds for choosing the optimal choice increase by 80%.
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Factors (1) (2)
B | Exp(B) B | Exp(B)
S0.816FFFF [ (,442%%%F ] 5o0%FFk [ () 91 7HF**
Intercept (0.1408) (0.1593)
0.150%FFF | 1.162%F%% | 0. 161%FF% | 1.175%%%*
Lambda (0.0180) (0.0197)
. 5.868%FF* | 353 713%*F*
QvalueDiff (0.4353)
| Fit (QICC) | (3771.953) | (3589.063) \

Table 8: GEE for dependent variable OptChoice, studying Lambda and QualueDiff. Stan-
dard errors are given in parentheses under the coefficients. The individual coeffi-
cient is statistically significant at the *10% level, the **5% level, the ***1% level,
and at the ****0.1% level.

5.3. Ul Design: Number of Choices

We now study how the UI design affects users’ ability to make optimal choices. Consider
Table 9 column (1), where we add NumChoices to the regression. This factor denotes the
number of choices in the game (i.e., 3, 4, 5, or 6 choices). We see that the factor has a large
negative effect on OptChoice, and the effect is highly statistically significant (p < 0.001).
Holding all other factors constant, increasing the number of choices by 1 reduces the odds
for selecting the optimal choice by 32%. Naturally, a more complex UI (i.e., more choices)
makes it harder for users to find the optimal choice. We also analyzed NumChoicesLeft
which denotes the number of choices that were still affordable during a game situation,
given the prices of the current choices and the user’s budget. However, when controlling
for NumChoices we found that NumChoicesLeft does not have a statistically significant
effect on OptChoice.

5.4. Incomplete Search: Position Effects

By design, the game exhibits a strong ordering effect: the values of the choices decrease
monotonically from top to bottom, as do the prices. Thus, it is conceivable that users scan
the choices in a linear way, either from top to bottom or from bottom to top. Given that
they are under time pressure, incomplete search effects may be expected, and prior research
has shown that this can lead to significant position effects (Dumais, Buscher and Cutrell,
2010; Buscher, Dumais and Cutrell, 2010). We can control for positional effects by adding
information about the position of the optimal choice to the regression. Consider column
(2) in Table 9 where we added six indicator variables to the regression. OptRelative Rank
denotes the “relative rank” or “relative position” of the optimal choice, taking into account
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Factors/Covariates (1) (2) (3)
B | Exp(B) B | Exp(B) B | Exp(B)
Intercept 0.283 1.327 -0.495* 0.610* -0.616*** | 0.540%**
p (0.2182) (0.2489) (0.2339)
Lambda 0.167HFF% | 1 I81FFF, [ 0. 162%FF% [ 1.176%FF% | 0.158%FF*F [ 1.171%%F*
(0.0206) (0.0223) (0.0238)
QualueDiff 5.062%FF** | 157, 888*¥H* | 4 421*¥H* | 83,196%HF** | 4 595%H** | 98 gG2*H**
(0.4297) (0.5061) (0.4989)
NumChoices -0.391FF%F [ 0.67T*FF* | -0.087* 0.916* -0.065 0.937
(0.0446) (0.0487) (0.0583)
; FHAE FEEE | FHAE FEEF
OptRelativeRank=>5 3('559208) 0.021 4(-10‘(1)296) 0.017
; FHAF FEEE | FHAE FHEF
OptRelativeRank=4 1(08?5199) 0.151 1(53359) 0.157
; FHAF R | FHAE FHTK
OptRelativeRank=3 1(0231706) 0.301 1(013282) 0.305
. ¥ ** .
OptRelativeRank=2 (%62;1)7) 0.541 (0032221) 0.593
OptRelativeRank=1 ((;0522) 0852 ((‘)Oégg) 0.844
OptRelativeRank=0 0 1 0 1
B ogosores RoRRE
OptimalChoiceNegative=1 1.299 0('3723247)
FHEE FEEF
CurrentCategory=2 1('8322059) 4.626
CurrentCategory=1 (00'1023935) 1.034
CurrentCategory=0 0 1
[ Goodness of Fit (QICC) | 3476.044 | 3345.116 | 3288.243

Table 9: GEE for dependent variable OptChoice, studying Ul complexity, position effects,
and loss aversion. Standard errors are given in parentheses under the coefficients.
The individual coefficient is statistically significant at the *10% level, the **5%
level, the ***1% level, and at the ****0.1% level.
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the currently unavailable choices (and counting from the top starting at 0). Consider a
game with 6 choices as an example. If two choices are unavailable such that there are
still 4 choices left, and the optimal choice is the third from the top, then the absolute
rank of that choice is 2, but the relative rank is 0. We use the relative rank rather than
the absolute rank for two reasons. First, using the absolute rank would not allow us to
consider games with different number of choices in one regression. Second, as more and
more choices become unavailable during a game (as the user depletes his budget), the
relative rank keeps adjusting, to reflect that a user doesn’t need to scan the non-available
choices, while the absolute rank doesn’t adjust. Thus, going forward, we use the relative
rank in the regressions analyses. However, we have also performed the same analyses using
absolute rank and obtained qualitatively similar results.

In column (2) of Table 9 we see that OptRelativeRank has a very strong, and highly
statistically significant negative effect on OptChoice. Note that all coefficient estimates are
relative to OptRelativeRank=0. The lower the rank of the optimal choice, the less likely
the users were to choose the optimal action. As we go from OptRelativeRank=0 to OptRel-
ativeRank=>5, the coefficients decrease monotonically, and except for OptRelativeRank=1,
all of the effects are statistically significant. Compared to the case when the optimal choice
has rank 0, holding everything else constant, if OptRelativeRank=4 the odds of choosing
the optimal action decrease by 84%, and if OptRelativeRank=>5, the odds decrease by 98%.
Thus, in particular for the very low ranks, the position effect is indeed very strong and
highly statistically significant (p < 0.001), and because our user model did not take it into
account, this presents a possible explanation for why the Ul optimization failed.

5.5. Loss Aversion

Loss-aversion, i.e., people’s tendency to avoid losses more than they appreciate same-sized
gains, is a well-known effect in behavioral economics (Tversky and Kahneman, 1991). Thus
we hypothesized to find it in our data as well. Consider column (3) of Table 9 where we
added OptimalChoiceNegative to the regression, an indicator variable that is 1 when the
value of the optimal choice is negative, and 0 otherwise. Additionally, we also added the
factor CurrentCategory to the regression, controlling for the different value distributions
in different game situations. OptimalChoiceNegative has a large negative coefficient, and
is statistically significant (p < 0.001). Thus, whether the optimal choice has a positive
or negative value has a large effect on users’ behavior, providing strong evidence for the
loss aversion hypothesis. In a more detailed statistical analysis of this effect (regression
table omitted), we also found that users are particularly likely to make a mistake when the
optimal choice has a negative value and the choice right above it has a positive value. We
consider this to be the most convincing evidence of users’ loss aversion, as this shows that a
large driver of their decision is whether the absolute value of a choice is positive or negative.
Note that this last effect cannot be attributed to a position effect because OptRelative Rank
is part of the regression and we are thus already controlling for the position effect.
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An alternative explanation for the observed effect could be classical risk aversion, which
is based on diminishing marginal utility of wealth (Koeszegi and Rabin, 2007). However,
in the 40-50 games that users played per experiment, they repeatedly faced many small-
scale risks with almost no effect on their overall wealth. Thus, loss aversion is a more a
convincing explanation for the observed behavior than risk aversion.

Another possible explanation for the observed effect could be myopia. It is conceivable
that users have a limited look-ahead horizon when making decisions during the game,
and thus do not fully account for the effect of running out of budget towards the end
of the game. However, in further statistical analyses we could not find evidence for this
hypothesis. In particular, we added the factors CurrentTimeStep and CurrentBudget to
the regression, but found no statistically significant effect for either factor.

6. Towards Personalized Market User Interfaces

We have seen that behavioral factors such as position effects and loss aversion play a
significant role in users’ decision making, offering potential answers to the question why the
behavioral Ul optimization failed. We now come back to the design lever Ul Optimization
that we studied in Experiment 2. In further analyses of OptChoice (see Table 13 in the
Appendix Section C), we find that the behavioral UT optimization indeed made the decision
problem easier for the users: they were 17% more likely to select the optimal choice when
using the Ul optimized for behavioral play. Given that the users made better choices but
their Realized Value still decreased, this suggests that the Ul optimization eliminated too
many valuable choices. In some sense, it was “too aggressive.”

Behavioral Optimization? H Optimal Value \ Realized Value ‘

1o 1.02 0.50
yes 0.78 0.39

Table 10: Ul optimization: Effects on optimal and realized value.

Now consider Table 10, which shows what happened to OptimalValue and Realized Value
under the behavioral optimization (the values are averaged between the games with fixed
and adaptive choice sets). By using the behavioral optimization, we decreased the optimal
value (achievable for a perfectly rational player) from $1.02 to $0.78. Thus, we “took
away” approximately $0.24 per game. Note that we never expected the users to come
even close to the optimal values, but instead we expected them to do better using the
behaviorally optimized UI such that the Realized Value would actually increase. However,
as we can see in the last column of Table 10, the Realized Value also dropped from $0.50
to $0.39. Relative to the optimal value, the users did better in the re-optimized game —
but in absolute terms they did worse.
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Factors/Covariates \ (1) ‘ | Factors/Covariates \ (1) ‘

I 0.360%*** I -0.308%***
ntercept (0.0331) ntercept (0.0377)
0.048%*%* 0.186****
Lambda (0.0068) Lambda (0.0094)
. . 0.061 . . 0.099%*
AdaptiveChoices=1 (0.0424) AdaptiveChoices=1 (0.0572)
. C -0.172%%** . N -0.068
BehavioralOptimization=1 (0.0371) BehavioralOptimization=1 (0.0495)
| Model Fit (QICC) | 30.050 | | Model Fit (QICC) | 74808 |
Table 11: GEE for dependent variable Re- Table 12: GEE for dependent variable Real-
alized Value for SmallLambda=0, izedValue for SmallLambda=1
studying the effect of Behav- studying the effect of Behav-
ioralOptimization. ioralOptimization.

A potential explanation is that by coincidence, the users in Experiment 2 acted “more
rationally” than the users in Experiment 1. However, the best fitting A-parameters for
experiments 1 and 2 are very similar, and thus, the data does not support this hypothesis.
Yet, we found another unexpected result regarding users’ level of rationality in Experiment
2. As before, we computed a \;-parameter for each user, as well as one A corresponding to
the best fit across all users. Next, we computed a binary variable Small Lambda; for each
user ¢ which is 1 if a user’s \; is smaller than the average A. Thus, SmallLambda denotes
whether a user belongs to the more rational or to the less rational group of users.

Now consider Tables 11 and 12, where we study the effect of BehavioralOptimization
on RealizedValue, separating users into the more rational users (on the left) and the less
rational users (on the right). For SmallLambda=0 (the more rational users), the effect of
BehavioralOptimization is particularly negative: for those users we made the game a lot
worse by doing the re-optimization. However, for SmallLambda=1 (the less rational users),
the effect of BehavioralOptimization is close to zero, and not statistically significant. Thus,
for less rational users, the behaviorally-optimized Ul was easier to use, but the resulting
Realized Value was practically the same.

This finding suggests a new research direction on personalized market user interfaces,
with the goal to tailor the Ul to the capabilities, needs, and preferences of individual users.
To achieve this, we must access or observe user-specific, behavioral and non-behavioral
data. This is available in many domains, in particular in the smartphone domain. Once
we have an estimate of a user’s “degree of rationality,” we can provide each user with a
market UI that is specifically optimized for that particular user.
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7. Conclusion

In this paper, we have introduced a new research agenda on market user interface design.
Our long-term goal is to understand how UI design choices for markets affect users’ abilities
to make good economic decisions, and how we can develop automated methods to optimize
market Uls. In studying this question, it is crucial to take a behavioral approach, deviating
from a perfectly rational agent model. Thus, our research explores a design space in which
human limited cognition meets computing.

We ran a behavioral economics lab experiment, testing the effect of different market Ul
design levers. In regard to the number of choices, we found that the realized value increases
as we go from 3 to 4 to 5 choices, with no significant effect going from 5 to 6 choices. In
future experiments, we will also test 7 and 8 choices, to see if the realized value increases
further or ultimately decreases again. For the design lever Fized vs. Adaptive Choice Sets,
we found that the realized value is significantly higher with adaptive choice sets.

Finally, the most interesting design lever was the behavioral Ul optimization. An unex-
pected result is that the realized value was lower when using the behavioral Ul optimization.
This suggests that our user model, based on the quantal response model, was too simplistic
to accurately predict user behavior. In future research, we will consider other behavioral
models that are better supported by neuroeconomic experiments like the drift-diffusion
model by Fehr and Rangel (2011).

In a subsequent decision analysis, we found that our model ignored important behavioral
factors like loss aversion and position effects. Yet, the most intriguing result concerns how
less rational and more rational users differed regarding the effect of the Ul optimization.
While there was no significant difference regarding the realized value for the less rational
users, the more rational users lost a lot of value in the UI optimization due to precluded
opportunities. This result points towards the need to estimate each individual user’s level
of rationality based on behavioral data obtained over time, to generate personalized market
Uls. Taking this idea a step further, we could also take a user’s personal value for time
into account, when generating a personalized Ul for this user, or even when automatically
making decisions on a user’s behalf. Certainly, learning users’ preferences, or an individual
level and on an aggregate level, will be important to automatically generate market Uls
that maximize users’ welfare. Thus, there are still many opportunities for research at
the intersection of market design, intelligent agents, Ul design, and behavioral economics,
ranging from better behavioral models, to algorithms for learning user preferences and
automated Ul optimization.
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Appendix

A. Computation of the Realized Value (Users’ Game Scores)

To analyze the effect of the four design levers on users’ performance, we could simply
measure and compare the average game scores that users achieved per treatment. However,
that measure is very noisy due to the high degree of randomness in the game itself. To
account for this, we compute a different measure, removing the randomness inherent to
the game and the user’s luck as much as possible. The main idea is to take the expected
optimal value of the game and subtract the expected value loss due to the user’s actions.
Our formula to compute the Realized Value is as follows:

ExpectedOptimalV alue + 7.4

-UserValuelL
OptimalScoreThisGame + 7.4 servatuehoss

RealizedV alue = ExpectedOptimalV alue—

The EzpectedOptimalValue is the expected a priori value for playing the game optimally,
without knowing the realization of the state uncertainties. Thus, this is simply the value
of the corresponding MDP. The OptimalScoreThisGame is the score a player could have
achieved in this particular instantiation of the game, had he followed the optimal policy
(not knowing the future). Finally, the UserValueLoss is the sum of the differences between
the Q-value of the optimal choice in each round and the Q-value of the choice selected by
the user. Thus, FxpectedValueLoss is a measure of how much value a user playing this
particular strategy would lose in this game instance on average (thus, also removing the
randomness due to cases where the user just got lucky).

We add 7.4 to ExpectedOptimalValue and to OptimalScore ThisGame to normalize both
values such that they cannot be negative. Then we scale each game’s UserValueLoss by
the ratio of these two numbers such that the same kind of mistake of a user leads to the
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same penalty, independent of whether the user got lucky with this game instance or not
(high or low OptimalScoreThisGame). This gives us a normalized measure for value loss.
Then we subtract this normalized measure from the EzxpectedOptimalValue and obtain the
Realized Value. Note that, if we let the number of games played go to infinity, then the
average game scores would approach Realized Value. However, with just a few hundred
games played per design lever, the impact of the game’s randomness and the user’s luck
on the game scores can be large, which is why we use Realized Value instead.

B. Data Selection for Behavioral Decision Analysis

From Experiments 1 and 2, we obtained 10,176 data points for the exogenous time treat-
ments (7-second and 12-second games). Because we tested four different design levers, there
is a lot of variance in the data. To most cleanly identify the behavioral decision factors,
we only study the data resulting from the analysis of the design lever Number of Choices.
Thus, for the analysis presented in Section 5, we only consider the data points from Experi-
ment 1, and only for games with fixed prices and with a 7-second or a 12-second time limit,
which leaves us with 3,456 data points. We exclude all cases with timeStep=6 because
in the last round of a game, the optimal choice is always the highest-ranked choice still
available, and thus the decision problem is trivial. This leaves us with 2,880 data points.
Furthermore, we exclude 7 cases where only one choice was left (nothing to decide), and 10
cases where only two choices was left (very unusual decision situation, often because the
user ran out of budget due to a mistake). This leaves us with 2,863 data points. Moreover,
a numerical rounding error in the software lead to a few cases where the values on the
available choices were in the wrong order. Excluding those cases leaves us with 2,786 data
points. Lastly, we exclude another 30 cases where a user let the timer run out (and thus
the bottom-choice was automatically selected), which leaves us with a total of 2,756 cases
(i.e., round). Note that we analyze games with a 7-second and with a 12-second time limit
in one analysis, because we could not find a statically significant effect of the time limit on
users’ decision performance.
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C. The Effect

of Behavioral Optimization on OptChoice

Factors/Covariates (1)
B | Exp(B)
Intercept vt o
p (0.3607)
0.193 % | 1.213%F
Lambda (0.0286)

. 3.324FFF | 27 TROFFH*
QvalueDiff (0.4165)

_ -0.665 0.514
NumChoicesLeft=4 (0.0.1338)
NumChoicesLeft=3 0 '

. B -3.205% K | (.03 7HHHH
OptRelativeRank=3 (0.4882)

: -1.010%F%*% [ 0.364%F**
OptRelativeRank=2 (0.2760)

: -0.233 0.792
OptRelativeRank=1 (0.2252)
OptRelativeRank=0 : '

) . 0.096 1.100
AdaptiveChoices=1 (0.0808)

. o 0.158%% L1717
BehavioralOptimization=1 (0.0719)
[Model Fit (QICC) [ 3329.030 | ‘

Table 13: GEE for dependent variable OptChoice studying the effect of BehavioralOpti-

mization. Standard errors are given in parentheses under the coefficients. The
individual coefficient is statistically significant at the *10% level, the **5% level,
the ***1% level, and at the ****0.1% level.
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