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Abstract

Combinatorial auctions (CAs) are widely used in
practice, which is why understanding their incen-
tive properties is an important problem. However,
finding Bayes-Nash equilibria (BNEs) of CAs ana-
lytically is tedious, and prior algorithmic work has
only considered limited solution concepts (e.g. re-
stricted action spaces). In this paper, we present
a fast, general algorithm for computing symmetric
pure ε-BNEs in CAs with continuous values and
actions. In contrast to prior work, we separate the
search phase (for finding the BNE) from the verifi-
cation step (for estimating the ε), and always con-
sider the full (continuous) action space in the best
response computation. We evaluate our method in
the well-studied LLG domain, against a benchmark
of 16 CAs for which analytical BNEs are known. In
all cases, our algorithm converges quickly, matching
the known results with high precision. Furthermore,
for CAs with quasi-linear utility functions and inde-
pendently distributed valuations, we derive a theo-
retical bound on ε. Finally, we introduce the new
Multi-Minded LLLLGG domain with eight goods and
six bidders, and apply our algorithm to finding an
equilibrium in this domain. Our algorithm is the
first to find an accurate BNE in a CA of this size.

1 Introduction
A combinatorial auction (CA) is a suitable mechanism to
allocate resources in domains where bidders have complex
preferences. CAs have been applied in multi-billion dollar
domains, including for the sale of spectrum [Cramton, 2013;
Weiss et al., 2017] and for procurement [Sandholm, 2013].

Unfortunately, in CAs, the strategyproof VCG mechanism
can lead to very low or even zero revenue (despite high com-
petition for the goods), and it incentivizes collusion [Ausubel
and Milgrom, 2006]. For these reasons, many CAs conducted
in practice do not use VCG but other mechanisms, like core-
selecting payment rules [Day and Milgrom, 2008]. However,
these rules are not strategyproof. Thus, to understand their
properties (incentives, efficiency, etc.) we must study them in
equilibrium instead of at truth.

1.1 Bayes-Nash Equilibria in CAs
Early results for core-selecting auctions were derived in full-
information Nash equilibrium (NE) [Day and Raghavan, 2007].
However, many real-world (high-stakes) CAs are only con-
ducted once, and bidders work hard to keep their private infor-
mation secret, making the full-information setting unrealistic.
Instead, a more appropriate assumption is that each bidder
knows his own valuation, but only has imperfect information
about the other bidders’ valuations. In this light, the appropri-
ate solution concept is Bayes-Nash Equilibrium (BNE).

For core-selecting payment rules, some analytical research
already exists. Ausubel and Baranov [2013] as well as Go-
eree and Lien [2016] have independently derived the analyti-
cal BNE of the so-called “Quadratic” rule, which is the pay-
ment rule most commonly used in practice [Day and Cramton,
2012]. Furthermore, Ausubel and Baranov [2013] have also
derived analytical BNEs of three other core-selecting rules.
However, finding BNEs by hand is tedious and error-prone, as
it typically requires solving challenging differential equations.
For this reason, only few analytical results exist, and only for
small settings with two goods and three bidders.

1.2 Prior Algorithmic Work on Computing BNEs
Computer scientists have long worked on algorithms for com-
puting equilibria in non-cooperative games. The Gambit soft-
ware package provides a number of algorithms to find NEs
and BNEs [McKelvey and McLennan, 1996; McKelvey et al.,
2016], but only for finite games (with finite type and action
spaces). Solving auction games with even a modest number
of types (valuations) and actions quickly becomes infeasible;
thus, discretizing the CA on a fine grid is not an option. For
this reason, researchers have developed special-purpose algo-
rithms for computing BNEs in infinite games (like CAs). To
make the computation tractable, all methods that have been
proposed to date are limited in some way: restricting the type
space, the action space, the size and complexity of the games,
or considering a simpler equilibrium concept. Importantly, all
numerical algorithms actually search for an ε-BNE, i.e., a strat-
egy profile where each player can only benefit (in expectation)
by at most ε in utility by deviating unilaterally.

One important class of BNE algorithms is based on iterated
best response (also known as fictitious play). The algorithms
proposed by Reeves and Wellman [2004], Vorobeychik and
Wellman [2008] and Rabinovich et al. [2013] belong to this



class and made important contributions to the literature. To
keep the computation manageable, all three algorithms re-
strict the strategy space: using piecewise linear strategies,
multiplicative shading strategies, or a finite set of actions.
One limitation of these algorithms is that they can only solve
games with restricted strategy spaces, because their ε-BNEs
are only valid within the space over which they search for best
responses.1 Extrapolating the BNEs produced by their algo-
rithm to obtain a solution for CAs in the full strategy space
would produce incorrect results, and lead to the false precision
problem, which we discuss in Section 3.

1.3 Overview of our Approach
We present a fast, general algorithm for computing symmetric
pure ε-BNEs in CAs with continuous values and actions. Our
approach is also based on the iterated best response algorithm,
but highly optimized to CAs. To handle CAs with continuous
value and action spaces we introduce two key ideas, which
separate us from prior work: (1) our algorithm is split into a
search phase to find the BNE (where we operate with a coarse
estimate of the ε), and a verification step to estimate a robust
ε for the found BNE; (2) in every best response calculation,
we use the full (continuous) action space.

In the search phase, we use piecewise linear strategies, sim-
ilar to Reeves and Wellman [2004]. However, the usage of the
verification step is novel: we verify the found BNE by comput-
ing the utility loss at a large but finite number of verification
points (values). This provides us with a robust estimate of the
ε of the ε-BNEs. In Section 7, we show that for CAs with
quasi-linear utilities and independently distributed valuations,
we can prove a bound on the true ε over the full (continuous)
value space (essentially for an infinite number of verification
points). Our approach is the first to achieve such a guarantee
for infinite games without restricting the strategy space.

In Sections 5 and 6, we offer numerous techniques for re-
ducing the runtime of the BNE search. We benchmark these
techniques in the widely used LLG domain, matching known
results with high precision. In Section 9, we introduce the new
Multi-Minded LLLLGG domain, with eight goods and six bid-
ders, and apply our algorithm to find an estimated 0.0035-BNE
in this domain. To the best of our knowledge, our algorithm is
the first to find such an accurate BNE in a CA of this size.

2 Preliminaries
2.1 Formal Model
A combinatorial auction (CA) is a mechanism allocating a
set M of goods to a set N of bidders. Each bidder has a
valuation (also called his type in the game theory literature)
vi(S) : 2M 7→ R≥0, which is a function assigning a value
to each bundle S ⊆ M of goods. Bidders may report non-
truthful valuations v̂i = si(vi) to the mechanism, where si
is the bidder’s strategy, mapping all her possible valuations

1Please note that Vorobeychik and Wellman [2008][Sec. 7.4]
correctly state this limitation of their algorithm. Rabinovich et al.
[2013] also handle this issue correctly by only claiming to find the
BNE in the “game with the restricted strategy space.”. Reeves and
Wellman [2004] restrict themselves to a class of auctions where the
best response is guaranteed to lie in the restricted strategy space.

to bids. We make the standard assumption that bidders only
submit bids on bundles for which their value is nonzero.

The mechanism takes the reported valuation profile v̂ and
computes an allocation X(v̂) = (X1, . . . , Xn) and a payment
vector p(v̂) = (p1, . . . , pn), with Xi ⊆ M and pi ∈ R. We
consider the incomplete information setting: vi is a random
variable drawn from some distribution Vi, and while all bidders
know their own valuation, they only know the distributions
V-i from which other bidders’ valuations are drawn. We let
V denote the corresponding joint distribution over all bidders.
We study the Bayesian game induced by the simultaneous-
move CA. We let ui(vi, v̂i, v̂-i) denote bidder i’s utility, given
his own valuation vi, report v̂i and all other bidders’ reports
v̂-i. Note that ui implicitly encompasses the allocation and
payment rule of the mechanism. Given a strategy profile
s = (s1, . . . , sn), the expected utility of reporting v̂i when
other bidders are playing strategies s-i is denoted

ūi(vi, v̂i, s-i) := E
v-i∼V-i

[ui(vi, v̂i, s-i(v-i)) ] . (1)

The best response of bidder i to the other bidders’ strate-
gies is BRi(vi, s-i) := arg max

r∈R|2
M |
≥0

ūi(vi, r, s-i). The ex-

pected utility loss of reporting v̂i instead of a best response is
εi(vi, v̂i, s-i) := ūi(vi, BRi(vi, s-i), s-i)− ūi(vi, v̂i, s-i). An
(ex-interim) ε-Bayes-Nash equilibrium (ε-BNE) is a strategy
profile s∗ = (s∗1, . . . , s

∗
n) such that for all i and all vi in the

support of Vi, εi(vi, s∗i (vi), s
∗
-i) ≤ ε. In words, an ε-BNE is a

strategy profile such that no bidder has a profitable deviation
netting her more than an ε improvement in (absolute) utility.

We use ε-BNE as the solution concept because we use
numerical algorithms with limited precision to find the BNEs.
Thus, when we solve a CA, we mean that we search for an
ε-BNE, where ε is a suitably small constant.
Remark 1. While we present our results using the absolute
error to establish the notion of an ε-BNE, our approach can al-
ternatively use the relative error, by defining the utility loss as
ūi(vi, BRi(vi, s-i), s-i)/ūi(vi, v̂i, s-i)− 1. Only some minor
technical adjustments for Theorem 1 are needed.

2.2 The LLG Domain
We study the performance of our algorithm both in a small
domain, where analytical results are available, and later in a
novel larger domain (see Section 9). For the former we turn to
the widely-used Local-Local-Global (LLG) domain [Ausubel
and Milgrom, 2006]. In LLG there are two local bidders, each
of whom is interested in a single good, and a global bidder
who is interested in the package of both goods. Ausubel and
Baranov [2013] study the case where the global bidder is
drawn from U [0, 2], while the local bidders’ valuations are
distributed according to F (v) = vα for parameter α and per-
fectly correlated with probability γ. Within this framing, they
provide analytical results for four different core-selecting pay-
ment rules (Quadratic, Nearest-Bid, Proxy and Proportional).
Adopting their results as our benchmark, we assemble a set
of 16 auction settings: 4 payment rules each applied to four
domains (α ∈ {1, 2} × γ ∈ {0, 0.5}).

When using a core-selecting payment rule in LLG, the global
bidder is always truthful. To match the analytical results
of Ausubel and Baranov [2013], we search for symmetric



equilibria (though this simplification is not essential to our
algorithm). Accordingly, an LLG strategy profile is described
by the symmetric local bidder strategy slocal : [0, 1] 7→ R≥0.

3 The “False Precision” Problem
In this section, we discuss two limitations of prior algorithmic
approaches that could lead to a false precision problem: (1)
using a restricted action space, and (2) computing ex-ante
BNEs instead of ex-interim BNEs.

3.1 Restricted Action Spaces
Many BNE algorithms restrict the action space in some way
during the search for the ε-BNE, to keep the computation time
manageable. However, a problem may arise when the algo-
rithm has converged to the final strategy profile, and the ε of
the ε-BNE must be reported. If the final strategy profile is only
evaluated in the restricted action space, then the computed ε
is accurate in the restricted game, but not in the game with the
full (continuous) action space.

Consider the following simple but striking thought exper-
iment: We search for a BNE in a non-strategyproof CA, re-
stricting the action space to only one action, namely bidding
truthful. Any iterated best response algorithm will immedi-
ately find an ε-BNE with ε = 0, as there is no beneficial
deviation. Obviously, this 0-BNE only “survives” in the re-
stricted action space, but not in the full action space.

More realistically, consider a simultaneous second-price
auction of two goods as described in [Rabinovich et al., 2013,
Section 6]. There are two symmetric bidders with single-
dimensional type θ ∈ U [0, 1]. We consider the setting where
the bidders’ utility for good A is 0.7θ, for good B is θ, and for
the bundle {A,B} is 1.6θ. Rabinovich et al. [2013] analyze
the game with a restricted action space where only bids of
0, 0.25, 0.5, 0.75 or 1 are allowed. For this game, they find a
(0.001)-BNE. To illustrate what would happen if one tried to
naı̈vely extrapolate from the restricted action space to the full
action space, we computed a best response to their BNE in the
full (continuous) action space.2 Not surprisingly, the bidders
deviate largely, and ε increases from 0.001 to 1.61.

Both examples illustrate that, if one is interested in finding
the BNE of the game with the full (continuous) action space,
then this needs to be handled explicitly. Our algorithm ad-
dresses this by considering the full action space in the best
response calculation (at individual valuations). In Section 7,
we later show that we can bound the ε of our algorithm, even
over the whole value space, for a specific class of CAs.

3.2 Ex-ante vs. ex-interim BNEs
The second problem with “false precision” refers to the equilib-
rium concept being used: whether an ex-ante or an ex-interim
ε-BNE is being computed. Interestingly, this issue mostly
shows up when the strategy space is restricted to simple multi-
plicative or additive shading strategies (as in Lubin and Parkes
[2009], Schneider et al. [2015], and Lubin et al. [2015]).

The underlying assumption of a one-parameter shading
strategy is that one shading factor is applied uniformly, across

2For this, we used a relative instead of an absolute ε in our algo-
rithm, because this is also what Rabinovich et al. [2013] used.

Algorithm 1: Iterated Best Response (with Verification)
Data: MechanismM, Distribution V of bidder

valuations
Result: ε-BNE strategy profile

1 s := truthful strategies
2 repeat
3 foreach bidder i do
4 s′i := BestResponseStrategy(M, V, s-i)
5 end
6 ε̃ := UtilityLoss(s, s′)
7 s := Update(s, s′)
8 until Converged(ε̃)
9 ε := Verification(s)

10 return (s, ε)

all types. Thus, it is not possible for each type to play its
preferred strategy, but all types must jointly choose a strategy
to play. This gives rise to the notion of an ex-ante ε-BNE:
every bidder only knows the distribution of its own type, the
best response in the ε-BNE is enforced to be the same for all
types, and the ε bounds the average benefit from deviating
across all types. This is in contrast to the ex-interim ε-BNE we
compute: each bidder knows its own type, the best response
in the ε-BNE is computed separately for each type, and the ε
bounds the maximum benefit from deviating across all types.

Sometimes, an auction designer may truly be interested in
an ex-ante rather than an ex-interim BNE. However, when
using multiplicative/additive shading strategies, the use of
an ex-ante BNE arises mostly as an artifact of the choice of
the strategy space, and is typically not otherwise justified.
This is important for two reasons. First, ex-interim BNEs are
arguably more realistic/interesting, because it makes sense to
assume that bidders know their own valuation. Second, ex-
interim BNEs provide significantly stronger guarantees, with
ε bounding the maximum any type can gain from deviating
unilaterally, while ex-ante BNEs only bound the average gain.

4 BNE Algorithm Framework
Our algorithmic framework has two key properties that distin-
guish it from prior work. First, we separate the search phase
(finding the BNE) from the verification step (robustly estimat-
ing the ε of the found BNE). Second, when computing best
responses, we consider the full (continuous) action space.

4.1 The Search Phase
The Iterated Best Response Algorithm. At the core of
our algorithm’s search phase is the well-known iterated best
response algorithm (also known as fictitious play [Brown,
1951]), presented in Algorithm 1. This algorithm proceeds in
rounds. In each round, each bidder’s new strategy is computed
via BestResponseStrategy as a response to the strat-
egy profile from the previous round. The algorithm terminates
when the utility loss across all bidders is small enough.

Modeling Strategies. To instantiate Algorithm 1, we
must specify the strategy space to be used in the



BestResponseStrategy calculation. Ideally this would
be the space of all functions, but this is infeasible. Instead, we
use a restricted strategy space, parameterized by a finite set of
control points. While the search is over such a restricted space,
we later verify that our BNEs are valid without this restriction.

There are many restricted strategy spaces that one might
use (e.g., piecewise constant functions, splines, etc); in this
work, we adopt piecewise-linear functions for our strategy
space. Note that when using piecewise-linear strategies, the
control points are simply elements of the value space. We
find piecewise-linear strategies to be particularly attractive as
they can approximate any bounded function with a sufficient
number of control points. For LLG, we use 160 control points
(unless otherwise noted), as this is sufficient for convergence
to ε = 0.00001 in all auction settings.

Pointwise Best Responses. To perform the
BestResponseStrategy step under piecewise lin-
ear strategies, we need to maximize a bidder’s expected utility
as a function of her report at each control point individu-
ally. This requires calculating pointwise best responses at
individual valuations vi, defined as:

BRi(vi, s-i) := arg max
r∈R|2

M |
≥0

ūi(vi, r, s-i(v-i)) (2)

where s-i is the strategy profile of the other bidders from the
previous round. Finding the expected utility ūi requires solv-
ing a computationally challenging integral. We devote Sec-
tion 5 to methods for making this calculation and the Update
step in Algorithm 1 practical. Then, in Section 6, we show how
to effectively implement the stopping criterion Converged.

Remark 2. The function to be maximized in Equation (2)
may be non-convex and/or non-differentiable, especially with
high-dimensional strategy spaces. Furthermore, it is not given
analytically, but only in black-box form. Thus, numerical
methods may only find a local optimum. Given this, we em-
ploy a sophisticated version of pattern search to compute best
responses that are as accurate as possible, even in multiple
dimensions (see Section 5.5).

4.2 Verification Step: Estimating the ε

An ε-BNE requires a bound on the utility loss over the entire
value space. However, since the value space is continuous, it
is not possible to check the loss for all individual valuations.
Our algorithm might achieve a small utility loss at the control
points, but not necessarily at values between control points,
where strategies are interpolated linearly and not directly opti-
mized. To cope with this, we employ a Verification step
in our algorithm, as shown in Algorithm 1. In the verification
step, we estimate the maximum utility loss as precisely as pos-
sible by taking a very fine, evenly-spaced grid of verification
points (1, 000 in our case) and computing a best response at
each of those points, using twice the number of Monte Carlo
samples and twice the number of function evaluations in our
pattern search (which will be introduced in Section 5). The
maximum loss we find in this way is an estimate for the true
ε. Note that due to the stochastic nature of our algorithm, the
verification step should only be run once.

5 Computing Best Responses
In this section, we focus on the computation of pointwise best
responses as formalized in Equation (2). This optimization
problem is performed in the inner loop of our algorithm (called
thousands of times). Thus, making the best response computa-
tion as fast as possible is essential to keep the runtime of the
overall algorithm manageable. Computing the expected utility
ūi for a single report v̂i requires solving the integral

ūi(vi, v̂i, s-i) =

∫
v-i

ui(vi, v̂i, s-i(v-i))f-i(v-i) dv-i, (3)

where f-i is the joint PDF associated with the distribution of
valuations of all the other bidders, V-i. In this paper, we approx-
imate the value of Equation (3) via Monte Carlo (MC) integra-
tion (i.e., numerical integration via random sampling) because
it is robust to discontinuities and scales to high-dimensional
spaces. This is important when we turn to larger CAs (our
ultimate goal) in Section 9. However, we first consider the
simpler LLG setting because it will enable us to compare our
ε-BNE solutions against known analytical results in Section 8.

Remark 3. The integral in Equation (3) in the simple LLG
setting is only two-dimensional and thus may alternatively
be solved by numerical quadrature. We also ran our full
algorithm with numerical quadrature in LLG, and achieved an
additional 3-fold speed-up. But to keep the presentation of the
algorithmic techniques comparable throughout the paper, we
evaluate their performance using MC integration exclusively.

In the following, we present a baseline algorithm for com-
puting best responses, and then offer a series of improvements,
each building upon the last. Runtime results for finding a
0.00001-BNE are presented in Table 1.3 Several of our tech-
niques make a trade-off between speed and accuracy, so it is
important to evaluate their effectiveness as a whole to capture
how changes in accuracy affect the convergence rate of the
overall algorithm. Therefore, we measure the runtime of the
entire algorithm, not just a single best response calculation.
Furthermore, to avoid conflating our runtime measurements
with the accuracy of the algorithm’s stopping condition, we
omit the stopping criterion and instead run the algorithm for
a large fixed number of iterations. Then, in an ex-post facto
analysis, we compute the iteration and runtime at which the
estimated ε crossed the 0.00001 threshold for the first time. In
Section 6, we will study effective stopping criteria.

Remark 4. Even though Monte Carlo integration is random,
we keep the seed fixed to make our results exactly reproducible.

5.1 Naive Monte Carlo Algorithm
We first present a basic algorithm where we create an evenly-
spaced grid of control points over the value space. To maxi-
mize the bidder’s expected utility at each control point we use
Brent search [Brent, 1971], a commonly-used form of uncon-
strained optimization, and we use Monte Carlo integration to
find the expectation. In most CAs, expected utility will be zero
when a bidder bids too little to win, and positive above this,
with a discontinuity at the boundary. In the LLG domain, it is

3Single-threaded runs on a 2.8Ghz Intel Xeon E5-2680 v2.



Algorithm Average
Iterations

Average
Runtime

Speedup
Factor

Naive MC † 20.0 5991.8 s
+ Quasi-R.Num. (baseline) 9.1 1296.2 s -
+ Common R. Num. 8.4 117.9 s 11.0 x
+ Adaptive Dampening 5.5 70.6 s 18.4 x
+ Pattern Search 5.6 29.4 s 44.1 x
+ Statistical Tests 5.8 22.8 s 57.0 x
+ Adaptive Control Points 5.8 5.3 s 243.2 x

Table 1: Runtimes to achieve an estimated 0.00001-BNE for several
algorithms, averaged over our 16 auction settings.
† Even with 200, 000 samples, Naive MC achieves only a 0.0004-
BNE and is thus not suitable as a baseline.

straightforward to find this boundary, enabling us to sample
only from the positive region in our integration. We perform
this optimization even in the basic algorithm presented here.

After each best response computation, we perform a damp-
ened update, by making the current strategy a combination
of the previous strategy and the best response: (1− w) · si +
w ·BRi(vi, s-i), for update weight w = 0.5. This reduces the
risk of overshooting the equilibrium strategy, and thus avoids
oscillations around the solution without convergence.4 This
basic algorithm fails to converge to our target ε = 0.00001
even using 200, 000 MC samples. We therefore include the
time to reach a 0.0004-BNE in Table 1 for reference, but use
our first enhancement, presented next, as our baseline.

5.2 Quasi-Random Numbers
Because an ε-BNE is defined by the worst-case utility loss
over all valuations, an equilibrium is only found when any
error in the best response calculation is below the ε-threshold
for all control points of every bidder. Thus, an error on any
control point of our strategy profile can prevent the algorithm
from converging. This can produce the counter-intuitive effect
that increasing the number of control points without increasing
sampling accuracy can actually decrease convergence.

These types of errors arise in Monte Carlo integration
through the variance in the sample estimate. Clearly, any
reduction in variance we can obtain will enhance the algo-
rithm. One effective method for reducing variance is to replace
standard pseudo-random numbers with quasi-random num-
bers in the sampling process [Morokoff and Caflisch, 1995].
Quasi-random numbers are low discrepancy sequences that
cover the sampled region more evenly than the same quan-
tity of random numbers. In our implementation we use a
multi-dimensional Sobol sequence; this modification enables
convergence to our target of ε = 0.00001 with only 100,000
samples. Using quasi-random numbers we converge in 9.1
iterations and 1296.2 seconds on average (see Table 1).

5.3 Common Random Numbers
In the best response computation, we repeatedly compare
the expected utility of two different actions. If X and Y
are the random variables representing the utility associated

4This phenomenon is typical of any procedure that iteratively
searches for fixed points. For domains where convergence is difficult,
it is necessary to set w adaptively, which we address in Section 5.4.

with two actions, then we want to determine if E[X]−E[Y ] is
greater or smaller than zero. By linearity of expectation we can
compute E[X − Y ] instead and get the same result with lower
variance. This idea is implemented by using the same sequence
of samples to compute both E[X] and E[Y ]. The samples
used for both integrals are pairwise perfectly correlated, but
still quasi random when considering each of the integrals in
isolation. Adding this technique, we get convergence to our
target ε using only 10,000 samples, i.e., 10% of the samples
needed by the baseline, resulting in a 11.0-fold speedup. Note
that we get more than a 10-fold speedup because, in addition
to saving a factor 10 in the best response computation, this
change also makes it converge in slightly fewer iterations.

5.4 Adaptive Dampening of Strategy Updates
To obtain more consistent convergence, we employ adaptive
dampening instead of the constant update factor w = 0.5 used
in the baseline.5 This sets the weights w dynamically, based
on how close to a solution we expect to be:

w =
2

π
arctan(c · εi) · (wmax − wmin) + wmin, (4)

where c is a new constant and εi = εi(vi, si(vi), s-i) is the
utility loss of playing si at vi. This creates a weight between
wmin and wmax, separately for each control point. Adding
this technique results in an 18.4-fold speedup over the baseline.

5.5 Pattern Search
In the best response calculation, the function being maximized
is an integral computed via Monte Carlo, and is thus very
expensive. To reduce these costs, we replace the Brent search
with pattern search, which requires many fewer function eval-
uations. Pattern search is a type of hierarchical local search
that evaluates a number of points around the current point ac-
cording to a fixed pattern. If a better solution is found, it moves
the center of the pattern there and continues searching. If not,
it decreases the size of the pattern and continues searching
at the current point. This process repeats until a sufficiently
small scale has been achieved. We further tune the precision
of the algorithm: when we are far away from an ε-BNE, then
high precision is wasteful, but when we are close to an ε-BNE,
then we need more precision to converge with high accuracy.
We adjust the required precision to match the context using a
method that is similar to that used for adaptive dampening in
Section 5.4. Overall, this method is much cheaper to compute
than Brent search when high precision is unnecessary, and
almost as accurate when it is needed. Using pattern search
results in a 44.1-fold speedup over the baseline.

5.6 Statistical Tests in Pattern Search
When using pattern search to find the best response, we do not
care about the actual utility achieved by different actions, but
only about ordinal information: which of the evaluated pattern
points has the largest utility. Thus, we only need to draw
enough samples to be reasonably certain which of the actions
we are considering is best. We therefore modify our algorithm

5Note that we are not the first to use adaptive forms of dampening
(see, e.g., [Fudenberg and Levine, 1995; Lubin and Parkes, 2009]).



Algorithm Average
Iterations

Average
Runtime

Speedup
Factor

Naive 7.2 1094.4 s
Naive-every-5 (baseline) 9.4 257.0 s -
Adaptive 8.3 148.9 s 1.7 x

Table 2: Runtimes for algorithm with intrinsic stopping, excluding
the verification step.

to first draw a small number of samples, and then apply a two
sided t-test [Cramér, 1947] to determine if one of the actions
is better with p < 0.01. If the t-test passes, we immediately
continue to the next step in our pattern search, having saved
many samples. If not, we draw additional samples. Adding
this approach enables us to draw as few as 10% of the samples
for some utility comparisons, resulting in a 57.0-fold speedup.

5.7 Adaptive Control Point Placement
BNE strategies often have regions of both high and low cur-
vature, and thus, using an equal spacing of control points
is inefficient because it requires many unnecessary points in
straight regions to have sufficient accuracy in curved regions.
To avoid this, we initialize our algorithm with an evenly spaced
grid of a few control points (10 in our experiments). We then
repeatedly place additional points at the midpoint of those seg-
ments where the second derivative is largest. This allows us to
reduce the total number of control points without increasing ε.
We obtain convergence in all 16 auction settings with only 40
control points instead of the 160 required at baseline, resulting
in an overall 243.2-fold speedup.

6 Intrinsic Stopping Criterion
In Section 5, we employed an extrinsic stopping criterion
for the search phase as an experimental tool to focus on the
performance of the best response computation. But when used
in practice, our algorithm needs to use an intrinsic stopping
criterion to determine when the target ε has been reached.

To this end, we employ a two-loop approach inside our
algorithm. The inner loop corresponds to the standard BNE
search, while the outer loop performs a higher precision best
response computation to estimate ε more precisely. Only if
the outer loop estimates ε to be small enough do we move into
the verification step. Otherwise, we return to the inner loop. In
practice, when choosing the precision of the outer loop, there
is an application-specific trade-off between the algorithm’s
runtime and the probability that the verification step will fail.
In our experiments, we set the outer loop to have the same
high precision as the verification step itself, to avoid the case
where verification fails (with very high probability).

Given that the outer loop is much more expensive than the
inner loop (here, as expensive as the verification step, with
1, 000 instead of 40 control points, and twice as many MC
samples and pattern search points) we must avoid running the
outer loop too frequently. We tested three intrinsic stopping
criteria. For the Naive algorithm, we simply go into the outer
loop after every iteration of the inner loop. This algorithm is
so expensive that we do not use it as our baseline (first row of
Table 2). Instead, we use as our baseline an approach where
we only go into the outer loop every 5 iterations (second row
of Table 2). Finally, our adaptive algorithm instead transitions

from the inner to the outer loop based on its current estimate
of the ε from the inner loop of the algorithm. To account for
the lower accuracy of the inner loop, we use 0.8 ·ε as the target
for the inner loop. Furthermore, when the outer loop fails, we
require at least two inner loop iterations before going into the
outer loop again. This approach yields a 1.7-fold improvement
(see Table 2). In all three variants of our stopping criterion,
the strategy profiles we find pass the verification step.

7 A Theoretical Bound on ε
So far, we have estimated ε numerically by computing the
utility loss at a finite number of valuations. In this section, we
show that, in some auction settings, we can derive a theoretical
bound on ε over the entire value space, thus proving formally
that a strategy profile is in fact a true ε-BNE. We also show
that our numerical estimates for ε are essentially identical to
the theoretical bound.

7.1 Deriving the Theoretical Bound
Our theorem requires the following two assumptions:
Assumption 1 (Quasi-linear Utilities). Utility functions are
quasi-linear, i.e. ui = vi(Xi)− pi.
Assumption 2 (Independently Distributed Valuations). The
valuations vi are mutually independent random variables.

Assumption 1 is standard in auction theory, and not very
restrictive. In contrast, Assumption 2 is more restrictive. By
excluding all CAs with interdependent valuations, it implies
that our theorem does not apply to eight of the 16 settings we
defined in Section 2.2.

Before we can state our theorem, we need three more defi-
nitions. For a bidder i, a grid Gi is a partition of the bidder’s
value space into rectangular cells, where each cell C is char-
acterized by its lowest and highest corners wi and w′i, written
as C[wi, w

′
i) ∈ Gi. The open parenthesis denotes that the

valuations on the upper boundary of the grid cell are explic-
itly excluded.6 A strategy si is piecewise constant on some
grid Gi if, for all cells C[wi, w

′
i) of Gi, for all valuations

vi ∈ C[wi, w
′
i), it holds that si(vi) = si(wi). Finally, we let

uBR
i (vi) := ūi(vi, BRi(vi, s

∗
-i), s

∗
-i) denote the best response

utility at valuation vi.
Theorem 1. Let s∗ be a strategy profile of a CA with quasi-
linear utilities and independently distributed valuations, with
each strategy s∗i piecewise constant on grid Gi. Then s∗ is an
ε-BNE with
ε = max

i∈N
max
wi,w

′
i:

C[wi,w
′
i)∈Gi

uBR
i (w′i)− uBR

i (wi) + εi(wi, s
∗
i (wi), s

∗
-i) (5)

Proof. See Appendix A of the full version of this paper.

In words, the theorem states that for each grid cell of each
bidder i, we derive a local bound on the utility loss of all
valuations vi contained in that cell. This bound does not
depend on vi, but only on the lowest and highest corners
defining the cell. The worst such bound among all cells and all
bidders is an upper bound for ε, over the whole value space.

6To simplify the presentation, in the definition of a grid we have
not discussed what to do with the points at the upper boundary of
the value space. To be technically correct, the grid definition should
include all lower dimensional grid cells at this boundary as well.



Figure 1: Maximum utility loss ε as estimated by our final algorithm
from Section 6 compared to the proven bound on ε over the whole
value space. Each data point is an average over eight auction settings.

Discussion/Application. Interestingly, Theorem 1 is con-
structive: we can use this result to obtain a strategy profile s∗
and a bound ε, together with a proof that s∗ is a true ε-BNE.
For this, we consider an arbitrary strategy profile s (a candi-
date BNE). We transform the strategies in s such that they are
piecewise constant on a grid: we take a regular grid over the
value space and let s∗i (vi) := si(wi) for each vi contained
in cell C[wi, w

′
i). Then we compute a best response to the

resulting strategy profile s∗ at all grid points wi, and finally
we compute ε according to (6).

Remark 5. Note that to formally apply Theorem 1, we would
technically need to be able to calculate the exact best response
utility uBR

i . However, the best response algorithm we described
in Section 5 is not guaranteed to find the global optimum
(because it uses pattern search). We could substitute a best
response algorithm with global convergence guarantees as
used in [Vorobeychik and Wellman, 2008], though it should
be noted that even such an algorithm is not guaranteed to
produce an exact best response in finite computation time.

7.2 The Bound on ε vs. the Estimated ε

In Section 4.2, we estimated the ε by computing the utility loss
on finitely many verification points. With Theorem 1 at our
disposal, we can now check the accuracy of these estimates.
For this, we consider the 8 of our original 16 auction settings
that are subject to Theorem 1, namely those with indepen-
dently distributed valuations (i.e. γ = 0). We take the strategy
profiles obtained as described in Sections 5 and 6 and compute
both the estimated ε as well as the ε bound (via Equation (6)),
using n evenly-spaced verification points in both cases.

In Figure 1, we show the estimated ε and the bound on ε,
varying the number of verification points on the x-axis. We
observe that the bound on ε converges towards the estimated ε,
which remains practically constant. At 128, 000 verification
points, the theoretical bound guarantees an ε that is below our
target of 0.00001. This illustrates how attractive our estimated
ε is: It is highly accurate and only uses a tiny fraction of the
verification points that the theoretical bound requires.

8 Comparison to Analytical Results
The ε-BNE concept provides guarantees regarding the maxi-
mum benefit any bidder can gain from a unilateral deviation.
However, it does not provide any guarantees regarding the
distance between the ε-BNE and the true BNE. Nevertheless,

Mechanism CA Domain
α = 1.0
γ = 0.0

α = 1.0
γ = 0.5

α = 2.0
γ = 0.0

α = 2.0
γ = 0.5

Quadratic 0.0016 0.0015 0.0027 0.0009
Nearest-Bid 0.0021 0.0032 0.0038 0.0031
Proxy 0.0021 0.0018 0.0026 0.0019
Proportional 0.0014 0.0016 0.0021 0.0009

Table 3: L∞ distance between our ε-BNEs and analytical results
from the literature for our set of 16 auction settings.

an auction designer may be interested in knowing this dis-
tance. We therefore determined the L∞ distance between the
0.00001-BNEs we find in LLG and the analytical results from
Ausubel and Baranov [2013] (see Table 3). We observe that
all strategies we find are within 0.0038 of the corresponding
analytical solution, showing that, in LLG, our algorithm indeed
often finds an ε-BNE close to the exact BNE.

Remark 6. Originally, we found a discrepancy between the
ε-BNEs reached by our algorithm and the analytical BNEs
in Ausubel and Baranov [2013]. We contacted the authors,
who promptly confirmed a small mistake in their analytical
results and provided us with the correct BNEs, which we have
incorporated into Table 3. Such a correction highlights the
value of having numerical techniques for finding BNEs, even
in simple domains, as a complement to analytical methods.

9 The Multi-Minded LLLLGG Domain

Bidder Bundle 1 Bundle 2
L1 AB BC
L2 CD DE
L3 EF FG
L4 GH HA
G1 ABCD EFGH
G2 CDEF GHAB

Table 4: The Multi-Minded LL-
LLGG domain has 8 goods and 6
bidders. Each bidder is interested
in exactly two bundles.

We next introduce the new
Multi-Minded LLLLGG do-
main, which represents
a significant increase in
complexity over LLG. The
domain has 8 goods A −
H , and 6 bidders, each
of which is interested in
two bundles, as enumer-
ated in Table 4. Each bid-
der Li draws its two bun-
dle values from U [0, 1],
while bidders G1 and G2

draw their two bundle val-
ues from U [0, 2]; all draws are independent. We apply our al-
gorithm to find an ε-BNE for the Quadratic rule in this domain.
At this domain complexity, we must employ constraint gener-
ation [Day and Raghavan, 2007; Bünz et al., 2015] to make
finding prices computationally feasible in practice. Because
the domain exhibits significant symmetries, we can search for
symmetric equilibria where all local bidders play one strat-
egy and global bidders play another. However, unlike in LLG,
these strategies are two-dimensional. Thus, the strategy pro-
file is described by a pair of strategies slocal : [0, 1]2 7→ R2

≥0
and sglobal : [0, 2]2 7→ R2

≥0. Even though these symmetries
can be exploited to reduce the dimensionality of the problem,
computing the expected utility of a given report remains very
expensive, requiring a 10-dimensional integral to be solved:
the V-i space consists of 2 bundle values for each of 5 other
bidders, a dimensionality only amenable to MC approaches.



Figure 2: The equilibrium of the Multi-Minded LLLLGG domain. Left and center show the BNE strategies for the local bidders for bundles 1
and 2. Right shows the global bidders’ BNE strategy for bundle 1 (the other bundle being symmetric).

We run our algorithm using a 30× 30 grid of control points.
For each iteration, we update all points in the grid as described
in Section 5, using a maximum of 200,000 Monte Carlo sam-
ples to compute the expected utility (the exact number varies
due to the usage of statistical tests). Computing the best re-
sponse over a single bidder’s grid of valuations takes several
hundred core-hours. Consequently, running the 80 iterations
needed to find an ε-BNE took us 54, 381 core-hours of compu-
tation time. The final strategy profile we found is an estimated
0.0037-BNE, and is illustrated in Figure 2. Using our tech-
nique from Section 7, we use a 120× 120 grid of verification
points to prove that it is a true 0.0218-BNE. Performing a
single best response computation on this larger grid required
another 54, 192 core-hours. Note that this is the first BNE cal-
culation in such a complex domain with such rich strategies.

Discussion. In Figure 2, we observe that global bidders over-
bid on modestly valued bundles when their other bundle has
a very high value. This manipulation makes sense as it shifts
the VCG reference point: Suppose that bidders G1, L3 and
L4 win bundles ABCD, EF and GH respectively. Consider
G1: overstating the value for EFGH will cause the VCG
reference point to increase for L3 and L4. And if the value
for ABCD is very high for G1, then this manipulation car-
ries little risk of accidentally winning the low-valued EFGH
bundle, and it decreases the expected payment for ABCD.

10 Generality and Extensions
Our approach is very general and can be applied to a variety of
settings. For example, our algorithm allows for arbitrary joint
distributions of valuations, which cannot be handled by the
analytical methods in Ausubel and Baranov [2013] and Goeree
and Lien [2016] or by the numerical methods in Rabinovich
et al. [2013]. A natural way to model such joint distributions
is via copulae [Sklar, 1959; Lubin et al., 2017].

Another direction we are already pursuing is to study the
effect of bidders overbidding on bundles for which they have
no value, as identified by Beck and Ott [2013]. Such strat-
egy spaces are more challenging to evaluate, because they
are inherently multi-dimensional. However, the inclusion of
overbidding in LLG is less complex than the new Multi-Minded
LLLLGG domain we presented in Section 9.

We also highlight the study of asymmetric equilibria which

has largely been absent from prior work due to its complexity,
but which can be directly studied using our approach: all that
is required is to track all bidders separately and to distinctly
initialize their strategies. The former adds only linearly more
computational effort, and the latter introduces a requirement
to run the algorithm multiple times with random restarts.

Finally, we note that the theoretical bound derived in Sec-
tion 7 does not apply to CAs with correlated bidders, which is
an obvious limitation. To recover a similar result in the general
case, it would be necessary to constrain the bidders’ valuations
and the mechanism to be nicely behaved in some sense. It may
be possible to derive a bound for weakly correlated values, for
specific CAs, but not for general classes of CAs. Investigating
this is an interesting subject for future work.

11 Conclusion
In this paper, we have introduced a fast, general algorithm for
finding symmetric pure ε-BNEs in CAs with continuous values
and actions. We have presented multiple techniques to sig-
nificantly improve the best response calculation and to make
the strategy updates adaptive, leading to an overall 243.2-fold
speed-up over the baseline algorithm. Furthermore, we have
presented techniques for the algorithm to intrinsically deter-
mine when it has converged to its target ε without expending
inordinate computation. In contrast to prior work, we separate
the search phase of the algorithm from the verification step,
and we use the full action space when verifying the found
ε-BNE. Both ideas help us avoid the false precision problem.

We have first verified the accuracy of the resulting algorithm
in the well-known LLG domain, where analytical benchmark
results are known. We have then shown the power of our
algorithm by providing the first ε-BNE with expressive strate-
gies in a novel, large CA domain with six goods and eight
multi-minded bidders. We believe this algorithm will facilitate
the study of many mechanisms and domains that were not
previously amenable to analytic or algorithmic analysis.
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A Proof of Theorem 1
For convenience, we first restate some important technical
concepts as well as the theorem itself.

Recall that for some fixed strategy profile s∗, uBR
i (vi) :=

ūi(vi, BRi(vi, s
∗
-i), s

∗
-i) is i’s expected best response utility at

valuation vi. Furthermore, let u∗i (vi) := ūi(vi, s
∗
i (vi), s

∗
-i) be

i’s expected utility at valuation vi, given strategy profile s∗.
Recall that a grid Gi is a partition of the value space into

rectangular cells. Each cell C[wi, w
′
i) ∈ Gi is given by its

lowest and highest corners, and if a strategy si is constant on
each such cell, then we say that si is piecewise constant on Gi.

Finally, recall that εi(vi, s∗i (vi), s
∗
-i) is i’s utility loss at a

single valuation vi. Per definition, for s∗ to be an ε-BNE, ε
must be an upper bound of εi for all i and vi.

Theorem 1. Let s∗ be a strategy profile of a CA with quasi-
linear utilities and independently distributed valuations, with
each strategy s∗i piecewise constant on grid Gi. Then s∗ is an
ε-BNE with

ε = max
i∈N

max
wi,w

′
i:

C[wi,w
′
i)∈Gi

uBR
i (w′i)− uBR

i (wi) + εi(wi, s
∗
i (wi), s

∗
-i) (6)

Before we proceed to the proof, we introduce two auxiliary
lemmas. Note that valuations are multidimensional in the
general case, and thus all comparisons vi ≤ v′i are meant
componentwise.

Lemma 1 (Utility is monotonic under fixed bids). Let v̂i be a
fixed bid of player i. Then, ūi(vi, v̂i, s∗-i) is monotonic in vi.

Proof. Let vi ≤ v′i. When bidder i bids v̂i, then the distribu-
tion over other bidders’ bids is the same whether i’s value is
vi or v′i because the valuations are independently distributed.
This implies that the distributions of the assignment Xi and
payment pi are also identical in both cases. Since we have
quasi-linear utilities, a bid of v̂i yields a weakly higher ex-
pected utility at v′i than at vi.

Lemma 2. uBR
i (vi) is monotonic.

Proof. Let vi ≤ v′i. Per Lemma 1 and the definition of a best
response, we have that

uBR
i (vi) = ūi(vi, BR(vi, s

∗
-i), s

∗
-i) (7)

≤ ūi(v′i, BR(vi, s
∗
-i), s

∗
-i) (8)

≤ ūi(v′i, BR(v′i, s
∗
-i), s

∗
-i) (9)

= uBR
i (v′i). (10)

Proof of Theorem 1. To establish that s∗ is an ε-BNE, we
need to show that

∀i∀vi : εi(vi, s
∗
i (vi), s

∗
-i) ≤ ε. (11)

Let wi, w′i be valuations such that C[wi, w
′
i) is the unique

cell containing vi. Such a cell always exists because a grid

partitions the entire value space. Note that wi ≤ vi ≤ w′i. We
have that

εi(vi, s
∗
i (vi), s

∗
-i) (12)

= uBR
i (vi)− u∗i (vi) (13)

≤ uBR
i (w′i)− u∗i (vi) (14)

≤ uBR
i (w′i)− u∗i (wi) (15)

= uBR
i (w′i)− uBR

i (wi) + εi(wi, s
∗
i (wi), s

∗
-i) (16)

≤ ε, (17)

where the first inequality follows from Lemma 2, the second
from Lemma 1 and the fact that s∗(vi) = s∗(wi), and the
third from the definition of ε, respectively.


