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Abstract
A key issue for the realization of the smart grid vi-
sion is the implementation of effective demand-side
management. One possible approach involves ex-
posing dynamic energy prices to end-users. In this
paper, we consider a resulting problem on the user’s
side: how to adaptively heat a home given dynamic
prices. The user faces the challenge of having to
react to dynamic prices in real time, trading off his
comfort with the costs of heating his home to a cer-
tain temperature. We propose an active learning ap-
proach to adjust the home temperature in a semi-
automatic way. Our algorithm learns the user’s
preferences over time and automatically adjusts the
temperature in real-time as prices change. In addi-
tion, the algorithm asks the user for feedback once
a day. To find the best query time, the algorithm
solves an optimal stopping problem. Via simu-
lations, we show that our algorithm learns users’
preferences quickly, and that using the expected
utility loss as the query criterion outperforms stan-
dard approaches from the active learning literature.

1 Introduction
One of society’s greatest challenges in the 21st century is the
revolution of the energy sector, moving from fossil-based en-
ergy sources towards renewable energy like wind and solar.
This transition is important to satisfy the growing demand for
energy while the annual production of many oil and gas fields
is decreasing, and to combat climate change in general and
the negative effects of carbon emissions in particular. How-
ever, this also creates a number of new challenges for three
reasons: energy from renewable sources is very volatile; en-
ergy is inherently difficult to store; and the classic model in
energy markets is one where supply follows demand. To ad-
dress these new challenges, governments are investing bil-
lions of dollars into the development of the next generation
of the electricity grid, the so-called smart grid [U. S. Depart-
ment Of Energy, 2003]. This new electricity network will
make it possible to expose real-time prices to end-consumers,
use electric vehicles that are plugged into the grid as energy
storage devices, and allow power companies to remote con-
trol certain home appliances in times when electricity supply

is particularly scarce. However, in contrast to the smart grid
vision, at the moment most end-users are still facing fixed en-
ergy prices or very simple day/night tariffs, and are unaware
of changes in the demand or supply of energy.

1.1 Demand-Side Management
With renewable energy becoming a larger part of the overall
energy mix, it is becoming increasingly difficult for supply
to always follow demand. A number of recent economic and
technological studies have shown that effective demand-side
management will be essential for the success of the smart grid
[Cramton and Ockenfels, 2011]. This means that in times
where energy supply is scarce, the demand for energy must
also decrease. One way to achieve this is to expose dynamic
energy prices to end-users in real time such that they can ad-
just their demand accordingly. At the moment, the biggest
demand-response effects come from big companies who al-
ready face dynamic prices and can shift some of their energy
usage [VDE, 2012]. However, in the future, the percentage
of electricity consumed by end-users will increase because
more and more cars will be electric vehicles, and an increas-
ing number of homes will use electric heat pumps and air
conditioners. Even if just part of the population adopts energy
tariffs with dynamic prices, effective demand-response man-
agement for end-users will become an important challenge.

1.2 Home Heating with Smart Thermostats
In this paper, we focus on one particular facet of demand-
response management: the problem of adaptively heating
(and cooling) a user’s home given dynamic electricity prices.
This addresses an important problem because cooling and
heating accounts for the largest part of end-users’ energy
bills. We consider a future smart grid design, where at least
some end-consumers are exposed to dynamic energy prices.
To optimize their utility, those users will have to react to dy-
namic prices in real-time, trading off their comfort (at dif-
ferent temperature levels) with the costs for heating or cool-
ing. Obviously, it is infeasible for a user to always manually
change the temperature when a price change occurs. Instead,
we envision smart thermostats that will automatically reduce
the energy consumption of the house when prices are high,
but only as much as is justified by the cost savings.

Designing a smart thermostat is a difficult problem be-
cause automatically adjusting the temperature requires know-



ing how the user trades off comfort for money. Some users
may have a high value for comfort and may be willing to pay
a lot for a perfectly-heated home. Others may be relatively
insensitive to temperature changes, and instead would prefer
to save on energy costs. Because of this user heterogeneity,
the smart thermostat needs to elicit the user’s preferences and
learn this trade-off over time, which makes this a formidable
AI problem in the computational sustainability domain.

Yet, even the most sophisticated thermostats currently on
the market do not consider this trade-off. The existing de-
vices are able to monitor a home’s energy usage and suggest
energy saving measures (e.g., Alert Me), or they can learn a
user’s daily schedule and adjust the times at which the house
is heated or cooled accordingly (e.g., Eco Factor and Nest).
However, these devices are completely unresponsive to en-
ergy price changes. Recent academic work on adaptive home
heating has focused on learning the thermal properties of a
house, but has also not considered how the user trades off be-
tween comfort and money [Rogers et al., 2011]. Naturally,
end-consumers are currently still very sceptical regarding the
benefits of the smart grid [Jung, 2010]. Many believe that
their comfort levels will be reduced and that they will only
save little if any money. We argue that a smart thermostat
that automatically reacts to price changes is necessary to re-
alize demand-response management, and would also be in the
interest of end-users. However, it must be non-intrusive and
simple to use, for end-consumers to adopt this technology.

1.3 Overview of Contributions
The main contribution of this paper is an active learning algo-
rithm for the adaptive home heating problem. Our algorithm
uses Bayesian inference to learn the user’s preferences over
time, automatically adjusts the temperature as prices change,
and requests new feedback from the user, but only once a day.
We explicitly model the user’s comfort-cost trade-off by sep-
arating the user’s value function (for temperature) from the
cost function (for heating or cooling). We propose an algo-
rithm that involves solving an optimal stopping problem to
find the optimal time to query the user. We evaluate our al-
gorithm in an online fashion via simulations. We find that
using the user’s expected utility loss as the query criterion
outperforms standard approaches from the active learning lit-
erature. To the best of our knowledge, we are the first to
propose an active learning approach to address demand-side
management in the smart grid.

2 Related Work
Automated Control in the Smart Grid. Ramchurn et
al. [2012] provide a good introduction to smart grids and
the demand-response management challenge. Rogers et
al. [2011] study the adaptive home heating problem. How-
ever, their focus is on learning the thermal properties of a
house and predicting environmental parameters, to optimize
the heating schedule. They assume that the user’s preferred
temperature is known in advance and do not consider the
comfort-cost trade-off. McLaughlin et al. [2012] consider the
same problem but also assume that the user’s desired tem-
perature is known to the algorithm. Vytelingum et al. [2010]
study micro-storage management for the smart grid, and de-

vise agent strategies that automatically react to price changes.
However, they assume that the amount of energy each user
desires per time period is known in advance, and thus the
problem of eliciting users’ preferences also does not arise in
their model. Finally, Jia et al. [2012] consider the retailer’s
perspective, and provide a solution for optimal pricing of en-
ergy, given that users trade off comfort for cost. However,
they also do not consider how a demand-response system
would learn about a user’s trade-off preferences. Overall, our
literature review suggests that the problem of eliciting and
learning user preferences in the smart grid has largely been
ignored by the research community so far.

Preference Elicitation and Active Learning. Our work pri-
marily uses techniques from preference elicitation [Boutilier,
2002] and active learning [Settles, 2009]. Our Bayesian in-
ference algorithm is inspired by the preference elicitation ap-
proach by Chajewska et al. [2000], who use the expected
value of information as their query criterion. However, while
they consider a domain where arbitrary queries can be syn-
thesized, we consider the problem of selecting the best query
from a stream of potential queries which is called selec-
tive sampling or stream-based sampling. Cesa-Bianchi et
al. [2006] and Beygelzimer et al. [2009] propose random-
ized selective sampling algorithms that have good conver-
gence guarantees in the limit, but do not aim to optimize each
individual sample. Our query technique is more similar to
the approach used by Cohn et al. [1996], in that we aim to
minimize the learner’s expected error with every individual
query. Our work is also related to the label efficient predic-
tion algorithms by Helmbold et al. [1997] and Cesa-Bianchi
et al. [2005]. Their algorithms handle the restriction that the
learner can only ask a limited number of times, however, they
cannot handle context variables, like price for example. In
contrast, Krause and Ong [2011] present bandit algorithms
that explicitly take context into account. However, they as-
sume that the algorithm receives feedback about the user’s
utility in every time step which is not given in our domain.
Finally, our problem can also be framed as a partial monitor-
ing game with side information [Cesa-Bianchi and Lugosi,
2006]. However, existing algorithms for this framework op-
erate in a prior-free domain [Bartók and Szepesvári, 2012],
while we assume a Bayesian learning framework.

3 The Model
3.1 Problem Statement
We consider the problem of adaptive home heating over a
horizon of N days, where each day consists of K time steps.
The price for energy is modeled using a discrete Markov pro-
cess {pt : t ≤ KN}. We use Tout to denote the current out-
side temperature, and T to denote the current temperature in-
side the house. The user’s utility is separated into two compo-
nents. First, it depends on his comfort level, which is mainly
determined by the inside temperature T but also influenced
by the outside temperature Tout. Second, the utility depends
on the cost the user has to pay for heating the house, which
is a function of the desired inside temperature T , the outside
temperature Tout, and most importantly the current price for
energy pt. We denote the user’s utility by u(pt, T, Tout).



Our goal is to design an active learning algorithm that
learns the user’s preferences over time and controls the
house’s temperature in a semi-automated way. Every time
step, the algorithm receives as input the current price pt. At
most once per day, the algorithm can query the user for the
temperature that is currently optimal for him:

Topt(pt, Tout) = arg max
T

u(pt, T, Tout). (1)

We assume that if the algorithm decides to issue a query,
the user provides a temperature value which the algorithm
uses to update its model of the user’s preferences. Based on
its current knowledge, the algorithm then sets the temperature
to its current best estimate of the optimal temperature, which
we denote by T̂opt(pt, Tout).1 Note that we often use Topt and
T̂opt without the parameters pt and Tout to simplify notation.
Our goal is to minimize the user’s cumulative utility loss:

L =

KN∑
t=1

(
u(pt, Topt, Tout)− u(pt, T̂opt, Tout)

)
. (2)

The one-query-per-day restriction is motivated by our
goal of designing a non-intrusive smart thermostat that end-
consumers are willing to use. Of course, many other design
choices regarding the interaction mode are conceivable, in-
cluding several queries per day, queries at a fixed time (e.g.
in the evening), or even a more intense preference elicitation
phase at the beginning of the learning process.

3.2 The User’s Utility Function
Inherent to the home heating problem is the user’s trade-off
between comfort and cost. To model this, we assume a value
function v(T, Tout) that quantifies (in currency) the user’s
level of comfort for temperature T given Tout, and a cost
function c(pt, T, Tout) that quantifies how expensive it is to
heat the house to temperature T at current price pt given Tout.
The user’s utility is the difference between value and costs:

u(pt, T, Tout) = v(T, Tout)− c(pt, T, Tout). (3)

Value Function. Prior research on thermal comfort has
shown that the colder it is outside, the lower the user’s ac-
ceptable indoor temperature [Peeters et al., 2009]. This sug-
gests that the user’s most preferred temperature also depends
on the current outside temperature. Formally, we let T ∗ de-
note the user’s preferred temperature at Tout = 0, and we let
m denote the slope with which the preferred temperature in-
creases as the outside temperature increases. We denote the
user’s preferred temperature by Tpref (Tout) = T ∗ +mTout.

Following prior work on home heating (e.g., [Rogers et al.,
2011]), we assume that the user incurs a utility loss if the
inside temperature deviates from his preferred temperature.
In particular, we assume that the utility loss is quadratic in
(Tpref − T ), i.e., in the difference between the user’s pre-
ferred temperature and the actual inside temperature.

1Note that T̂opt may be different from the temperature value
provided by the user, which is consistent with our Bayesian ap-
proach, but may be confusing for the user in practice. Of course,
to improve usability, the smart thermostat could also “ignore” the
Bayesian model for one time step, and simply set the temperature to
the value provided by the user.

Figure 1: An illustration of the stochastic price process, here
over 7 days. The price process has two periodic peaks per day
with random fluctuations that follow a random walk.

Peeters et al. [2009] have shown that people are more sen-
sitive to temperature deviations the colder it is outside. To
model this, we use an exponential function parameterized by
b, which denotes the user’s sensitivity if Tout = 0, and c,
which determines how much the user’s sensitivity changes
as the outside temperature changes. Finally, we let a denote
the user’s value for his most preferred temperature (i.e., when
T ∗ + mTout = T ). Putting all of this together, we arrive at
the following value function formulation:

v(T, Tout) = a− b · e−c·Tout︸ ︷︷ ︸
sensitivity

(
(T ∗ +mTout)︸ ︷︷ ︸
preferred temp.

−T
)2 (4)

Cost Function. The user’s cost function is given by the fol-
lowing equation:

c(p, T, Tout) = p|T − Tout|. (5)
This function captures the fact that the flow of heat between

a building’s interior and exterior is proportional to the tem-
perature difference, which implies that the amount of energy
necessary to heat a house also depends on the temperature dif-
ference. Note that this function correctly models heating and
cooling, since it only depends on the temperature difference.

Combining the value and the cost function, we obtain the
following linearly separable utility function:
u(p, T, Tout)=a− be−cTout

(
(T ∗ +mTout)− T

)2︸ ︷︷ ︸
value

− p|T − Tout|︸ ︷︷ ︸
cost

3.3 The Stochastic Price Process
Because the algorithm only queries the user once per day, we
are interested in the daily price dynamics. An important fea-
ture of the daily energy prices are two peaks, one in the morn-
ing at around 8 a.m., and one in the evening at around 6 p.m.
We model this periodicity using a sine function, following
Weron [2006]. To model any random price movements (e.g.,
due to demand or supply changes) we use a discrete symmet-
ric random walk. Put together, the price process is given by:

pt = A sin(ωt+ φ) +B + pt−1 +Xt, (6)

where A is the amplitude of the sine, ω is the periodicity, φ
is the phase shift, B is the offset, and Xt is a Bernoulli vari-
able corresponding to the random walk. We use the notation
P(pt′ |pt) to denote the conditional probability of encounter-
ing the price pt′ given pt. See Figure 1 for an illustration of
the price process over 7 days with 24 time steps per day.



4 The Active Learning Algorithm
The active learning algorithm we propose consists of two
main components: 1) a Bayesian learning component that
learns the parameters of the user’s utility function over time,
and 2) a query component that decides when to ask the user
for new feedback (once per day). In Section 4.1, we describe
the high-level algorithmic framework, before diving into the
details of the two components in the following sections.

4.1 The Algorithmic Framework
Every day, the algorithm’s goal is to select the best query from
the stream of prices it encounters. Loosely speaking, it faces
the following gamble. Either sample at the current price or
wait and hope that a future query will yield a more useful
sample. We will use the notion of a gain function G(pt) to
measure the “usefulness” of a query at price pt. It is intuitive,
for example, that querying at a price at which the user has
already given feedback before is less useful than asking at a
price that has not been encountered before. The different gain
functions we consider (information gain and variance reduc-
tion) measure usefulness in different ways and thus lead to
different decisions regarding the optimal query time.

Given the K times steps per day, the algorithm’s goal is to
find the optimal stopping time t∗ ∈ {1, . . . ,K} at which the
expected gain G of a query is highest:

t∗ = arg max
t

E[G(pt)]. (7)

To find the optimal stopping time, the algorithm computes
an optimal stopping policy π(t, pt) → {sample, continue}.
For each time t and price pt, this policy prescribes whether to
ask the user for feedback now, or whether to wait. This pol-
icy can be computed by dynamic programming [Peskir and
Shiryaev, 2006]. Keep in mind that the algorithm computes a
new optimal stopping policy at the beginning of every day.

If the algorithm decides to request feedback, it asks the user
what his preferred temperature is right now given pt and Tout.
The user decides how to trade off his comfort level against the
costs for heating, and then provides a temperature value yt to
the algorithm. Using this new data point, the algorithm up-
dates its model of the user’s utility function using Bayes’ rule.
Finally, the algorithm sets the optimal temperature, T̂opt, tak-
ing into account its prior knowledge and all feedback data it
has gathered about the user’s preferences so far. The user then
suffers a utility loss of u(pt, Topt, Tout) − u(pt, T̂opt, Tout),
which is not observed by the algorithm, but which we use to
measure the performance in our simulation in Section 5. The
whole active learning framework is shown in Algorithm 1.

4.2 Bayesian Updating & Setting the Temperature
Recall that the user’s optimal temperature is given by:

Topt(pt, Tout) = arg max
T

u(pt, T, Tout). (8)

Based on the functional form of the user’s utility function de-
scribed in Section 3.2, we can calculate the first order condi-
tion and solve for T , and arrive at the following equation for
the user’s optimal temperature:

Topt(p, Tout) = T ∗ +mTout ± p
ecTout

2b
(9)

Algorithm 1: Active Learning Framework

Input: prior (mθ,Σθ); noise variance σ2
n

Variables: current price pt, optimal stopping policy π
begin

for d=1 to # of days do
for t=1 to # of time steps per day do

pt ← getNextPrice(pt−1)
if t =1 then

//allow a new query
canAsk← true
π ← OptimalStopping(pt)

if canAsk then
//decide whether to query user
if π(pt, t) = sample then

yt ← getUserFeedback()
BayesianUpdate(pt, yt)
canAsk← false

T̂opt ← SetTemperature(pt, Tout)

Note that a does not matter for the optimization, and we only
have to learn the parameter vector θ = (b, c, T ∗,m).

Bayesian Updating. We assume that the parameter vector
θ is normally distributed, and therefore define a Gaussian
prior P(θ) = N (mθ,Σθ). Furthermore, we assume that
the user makes mistakes when giving feedback yt to the ther-
mostat. We model this with i.i.d. additive Gaussian noise,
yt = Topt + ε, where ε ∼ N (0, σ2

n) is a normally distributed
random variable with mean 0 and noise variance σ2

n. Thus,
the likelihood of yt is also normally distributed with mean
Topt and variance σ2

n:

P(yt|pt,θ) ∝ exp
(
− 1

2σ2
n

(yt − Topt)2
)
. (10)

The posterior is then computed as the product of the prior and
the likelihood according to Bayes’ rule:

P(θ|pt, yt) ∝ P(θ) · P(yt|pt,θ). (11)

To update the posterior distribution after a sample point
(pt, yt) has been gathered, we use Eq. (11) recursively, using
the posterior after k−1 observations as the prior for the kth
update step:

P(θ|Dk−1 ∪ (pt, yt)) ∝ P(θ|Dk−1) · P(yt|pt,θ), (12)

whereDk−1 ={(pi1 , yi1), ..., (pik−1
, yik−1

)} denotes all k−1
data points the algorithm has gathered until time step t− 1.

Setting the Temperature. Finally, the thermostat sets the
estimated optimal temperature (according to its model of the
user’s preferences) by computing the expected value of Topt,
weighting each of the possible values for the parameters θ by
their posterior probability:

T̂opt(pt, Tout) = Eθ[Topt] (13)



Figure 2: A sample run, illustrating how our algorithm learns
the user’s preferences over time (here 7 days).

Figure 2 illustrates what our algorithm does in practice.
The figure shows a sample run from our simulation (described
below), over 7 days, here with 24 time steps per day. The
blue line represents the user’s true optimal temperature. The
green line represents the estimated temperature values that
our algorithm sets based on its user model. As one can see,
although the estimated temperature is initially off by 2 to 3
degrees, it quickly converges to the true optimal temperature.

4.3 Optimal Stopping using Information Gain
Now that we have introduced the learning component of our
algorithm, we move on to the description of the query com-
ponent. First, we formalize the optimal stopping problem and
show how to solve it. Then we introduce information gain as
the first gain function, or query criterion. In the next two
sections, we refine those initial approaches, leading to an im-
proved version of the optimal stopping algorithm as well as
to more sophisticated query criteria.

Computing the Optimal Stopping Policy. Recall from
Section 4.1 that the optimal stopping policy is a function
π(t, p) that for every price p and time step t prescribes
whether to query now, or whether to wait. Obviously, the pol-
icy only prescribes to wait if the immediate gain from query-
ing the user now is lower than the expected future gain from
waiting and querying later.

While G(pt) denotes the immediate gain from querying
now at price pt, we let St denote the expected gain at time
step t when following the optimal stopping policy at every
time step going forward from t. St is defined recursively as:

St = G(pt) for t = K (last time step)
St = max {G(pt),E[St+1|pt]} for t = K−1, . . . , 1. (14)

To derive the optimal policy, we compare the gains G(pt)
at time step t = 1, . . . ,K−1 to the expected future gains
E[St+1|pt] for all possible prices pt. If G(pt) ≥ E[St+1|pt],
then the optimal policy states that we should query, i.e.,
π(t, pt) = sample. Otherwise, π(t, pt) = continue.

Note that the first price p1 is known, and thus all future
prices pt that could possibly be encountered until the end
of the day can be computed by adding or subtracting a) the
random walk price increment per time step, and b) the price
movements according to the daily price process model.

Algorithm 2: Computing the Optimal Stopping Policy
Input: starting price p1
Output: optimal stopping policy π
begin

S ← 0
for t = # of time steps per day to 1 do

forall the reachable prices p do
if t = # of time steps per day then

π(t, p) = sample

else
if t = # of time steps per day −1 then

St,p ← 1
2 [G(p+ 1) + G(p− 1)]

else
St,p ← 1

2 [max{G(p+ 1), St+1,p+1}+
max{G(p− 1), St+1,p−1}]

if G(p) ≥ St,p then
π(t, p) = sample

else
π(t, p) = continue

return π

Algorithm 2 shows how the optimal stopping policy is
computed for all time steps and all possible prices. To sim-
plify the exposition of the algorithm, we assume here that the
price process is a symmetric random walk with step size 1.
However, it is straightforward to adopt the algorithm to more
complicated price processes such as the one defined in Sec-
tion 3.3. We use the variable St,p to denote the expected gain
at time step t, given price p, i.e. St,p = E[St|p].

Query criterion: Information Gain. So far, we have left
the gain function G(pt) unspecified. However, to instantiate
the optimal stopping algorithm, we need to define one partic-
ular gain function, or query criterion, G(pt), that quantifies
how useful a query is at a price pt (note that we use the terms
gain function and query criterion interchangeably). The first
criterion we discuss is information gain which measures how
much the uncertainty about the parameters θ is reduced by
adding an observation yt [Cover and Thomas, 2006]. This is
expressed using the mutual information I(θ, yt) = H(θ) −
H(θ|yt), where H(·) is the differential entropy [Cover and
Thomas, 2006]. Intuitively, the higher the uncertainty (or
variance) of Topt at a given price, the more information can be
gathered by querying at this price. It can be shown that the in-
formation gain for a given price is equivalent to the variance
of the predicted optimal temperature Topt [MacKay, 1992].
Thus, we define our first query criterion as:

Ginf (pt) = V ar[Topt(pt)] (15)
Note that the user’s utility actually also depends on the out-

side temperature Tout. However, in this paper, we do not
assume that the algorithm has a model for Tout. Thus, our
formulation of the optimal stopping problem is only optimal
with respect to the stochastic price process and implicitly as-
sumes a fixed value for Tout. But it is straightforward to ex-
tend the algorithm by incorporating a model for Tout as well.



4.4 Optimal Stopping using Temperature Loss
Note that the basic version of the optimal stopping algorithm
neglects the fact that until the algorithm asks the user for feed-
back, the user has already incurred a utility loss every time
step. Therefore, we now re-formulate the optimal stopping
problem using loss functions, with the new goal of minimiz-
ing the expected total loss. Therefore, we define our gain
function G(pt) to be a loss function multiplied by −1, i.e.,
G(pt) = −L(pt), such that minimizing the expected loss is
equivalent to maximizing the expected gain.

We define the function Lnow(pt) that measures the loss the
user incurs at time t given price pt if the algorithm estimates
the optimal temperature with its current knowledge without
issuing a query. Thus, the algorithm will incur loss Lnow(pt)
at every time step t until it decides to query the user. However,
if the algorithm decides to issue a query at time t, then the loss
incurred will be smaller than Lnow(pt) because the algorithm
will be able to estimate the temperature more accurately due
to one additional data point. This leads to the following new
definition of St:

St = G(pt) for t = K (last time step)
St = max {G(pt),−Lnow(pt) + E[St+1|pt]} for t = K−1,...,1.

The term −Lnow(pt) in the last equation reflects the loss
that the user incurs if the algorithm does not issue a query at
time t, while the (smaller) loss incurred if the algorithm is-
sues a query will be incorporated in the gain function G(pt),
which we define in the next section. As before, the optimal
stopping policy can be computed using the approach sum-
marized in Algorithm 2, but adapting the equations for the
expected future gains Sp,t according to the new formulation.

Query criterion: Temperature Loss. To instantiate the
new loss-based optimal stopping algorithm, we follow an
idea from [Cohn et al., 1996], and specify as our new goal to
select the query that minimizes the expected squared error in
the temperature estimation. This is motivated by the fact that
the expected squared error of a learner can be decomposed
into squared bias and variance, the so-called bias-variance
decomposition [Geman et al., 1992], which states that we can
approximate the expected squared predictive error if the bias
of the learner is sufficiently small compared to the variance.

First, let us revisit Lnow(pt). Due to the bias-variance
decomposition, we can approximate this function using
the variance of the predicted temperature: Lnow(pt) =
V ar[Topt(pt)]. To obtain a gain function G(pt), we need the
expected (posterior) variance of Topt, condition on sampling
at a given price pt. We let Lask,t

temp(p) denote the expected con-
ditional variance of Topt at price p, if the user was queried
at time step t, i.e. Lask,t

temp(p) = V ar[Topt(p)|(pt, yt)]. The
gain function that we define now amounts to quantifying the
expected predictive loss until the end of the day plus the ex-
pected loss of one additional day, given the user was queried.
Adding the expected loss of one additional day is a heuristic
to account for the future differences in losses due to the par-
ticular query. This is only a heuristic as it does not account
for all effects on losses in future days, because it ignores the
fact that the algorithm will be able to issue a new query on the

next day (and on every day thereafter).2 The query criterion
is then defined as follows:3

Gloss temp(pt) =

−
(
Lask,t

temp(pt)+

K∑
t
′
=t+1

E[Lask,t
temp(pt′ )|pt])︸ ︷︷ ︸

loss until end of day

+

2K∑
t
′
=K+1

E[Lask,t
temp(pt′ )|pt]︸ ︷︷ ︸

loss next day

)

Note that E[Lask,t
temp(pt+i)|pt] denotes the expectation of

Lask,t
temp(pt+i) with respect to the condition probability dis-

tribution given by the price process, i.e., according to
P(pt+i|pt), as defined in Section 3.3.

4.5 Optimal Stopping using Utility Loss
The query criterion we develop in this section is based on the
following insight: minimizing the expected squared error of
the temperature estimation (as we did in the previous section)
misses the fact that the user primarily cares about his utility
losses, and that an error in the temperature estimation can
only be a proxy for that. Thus, our new goal is to directly
minimize the user’s expected utility loss.

Analogously to the temperature variance criterion, we can
approximate the user’s squared utility loss with the variance
of the utility function. To arrive at the expected utility loss
we can simply take the square root of the variance of the util-
ity. Therefore, define Lnow

u (p) =
√
V ar[u(p)], and similarly

Lask,t
u (p) =

√
V ar[u(p)|(pt, yt)]. The following query cri-

terion minimizes the expected square root of the variance of
the utility function, which is equivalent to choosing a sample
point that minimizes the user’s expected utility loss:
Gloss util(pt) =

−
(
Lask,t

u (pt)+

K∑
t
′
=t+1

E[Lask,t
u (pt′ )|pt])︸ ︷︷ ︸

loss until end of day

+

2K∑
t
′
=K+1

E[Lask,t
u (pt′ )|pt]︸ ︷︷ ︸

loss next day

)

This query criterion together with the optimal stopping for-
mulation described above is the ultimate query component
that we propose for our active learning algorithm.

5 Experiments
We evaluate our active learning approach via simulations, fol-
lowing the basic structure of Algorithm 1. For the learning
and prediction part of the algorithm, we perform a non-linear
regression using a Bayesian linear parameter model.

5.1 Bayesian Linear Parameter Model
Recall that the optimal temperature is a non-linear function
of the input variables pt and Tout. However, if we fix the
parameter c, we can write the optimal temperature as a linear
parameter model:

Topt(pt, Tout) = w0 + w1Tout + w2p · ecTout/2 (16)

2Note that solving an optimal stopping problem over a horizon
of N days with K time steps each quickly becomes computationally
infeasible, even for moderate values of N and K.

3To simplify the notation for the summation indices, we only
state the criterion for the first day.
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Figure 3: Simulation results comparing four different query criteria: (a) varying the increment of the price process; (b) varying
the amplitude of the sine of the price process; (c) varying the noise variance σ2

n.

We can identify the weights as follows: w0=T ∗, w1=m
and w2 =1/b. We augment the input vector with an offset,
such that x = (1, pt, Tout) and write

Topt(x,w) = wTφ(x), (17)

where w=(w0, w1, w2)T and φ(x)=(1, Tout, pe
cTout/2)T .

Due to our assumption of a Gaussian prior and a Gaussian
additive noise model, the posterior probabilities are likewise
Gaussian and we can perform Bayesian regression using the
Bayesian linear parameter model [Bishop, 2006].

5.2 Experimental Set-up
For all experiments, we use the following basic set-up. We
use N=30 days, each day consisting of K=12 time steps.
The prior means are 22 for w0 (i.e. T ∗), 0.1 for w1 (i.e. m),
and 0.2 for w2 (i.e., 1/b). The values T ∗ = 22 and m = 0.1
are similar to the values reported by Peeters et al. [2009]. The
prior variances are fixed as σ2=(1, 0.1, 0.1). The noise vari-
ance, which describes the user’s ability to provide accurate
temperature values (see also Eq. (10)), is set to σ2

n = 0.5.
For the sine of the price process, we set the amplitude A =

10, the offset B = 20, the periodicity ω = 4π/K, and the
phase shift φ = 4π/3. The increment of the random walk
is 1, i.e. Xt ∈ {−1, 1}. The daily variations of the outside
temperature are modeled using a sine function with offset 5
and amplitude 5. Thus, Tout ranges from 0 to 10 degrees
during a day, which are typical heating conditions [Peeters et
al., 2009]. The parameter c is set to 0.01. We also conducted
the simulations with higher values of c but found qualitatively
similar results. Each experiment is repeated for 100 trials,
and in every trial, a user type is drawn randomly from the
Gaussian prior distribution.

5.3 Results
We compare the performance of the following four query cri-
teria: (1) Ginf , (2) Gloss temp, (3) Gloss util, and (4) random
querying. All four query criteria are run in parallel, which
implies that they see the same price process and even get the
same samples if they perform a query at the same time step.

We vary the parameters that we identified to have a signif-
icant impact on the performance of the query criteria. Fig-
ure 3(a) shows the results of increasing the increment of the
random walk, Xt, from 1 to 2 to 3. As one can see, the query
criterion Gloss util performs significantly better than all other
criteria, for small as well as for large price increments. In
Figure 3(b), we present performance results varying the am-
plitude of the sine of the prices process from 5 to 10 to 15.
Again, Gloss util outperforms all other query criteria for all

three settings. Lastly, in Figure 3(c), we vary the noise vari-
ance, σ2

n, from 0.1 to 0.5 and 1.0. Here, Gloss util performs
significantly better than all query criteria for σ2

n = 0.1 and
σ2
n it performs equally well as Gloss temp for σ2

n = 1.0. In
summary,Gloss util is never worse than the other criteria, and
in most settings significantly outperforms all other criteria.

The results also demonstrate that the information gain cri-
terion, i.e., Ginf , performs much worse than Gloss temp and
Gloss util. This is mainly due to the fact that the latter two cri-
teria take the loss over the whole day into account, whereas
information gain neglects this. A second finding is that the
larger the noise, the smaller the differences between the indi-
vidual criteria. This also makes sense, because lots of noise
decreases the predictability of the queries which decreases the
value of sophisticated optimized techniques.

6 Conclusion
In this paper, we have studied the problem of adaptively heat-
ing a home given dynamic energy prices. We have presented
a novel active learning algorithm that determines the optimal
time to query the user for feedback, learns the user’s prefer-
ences via Bayesian updating, and automatically sets the tem-
perature on the user’s behalf as prices change. Given the con-
straint of at most one query per day, determining the optimal
query time requires solving an optimal stopping problem. Via
simulations, we have demonstrated that a query criterion that
minimizes the user’s expected utility loss outperforms stan-
dard approaches from the active learning literature.

It is important to note that we have purposefully presented
a relatively simple user model and made a number of sim-
plifying assumptions that we will relax in future work. As
a first step, we plan on incorporating the temporal dynamics
of heating as well as weather forecasts into our model. This
will give rise to a sequential planning problem, which we can
combine with our active learning algorithm.

We believe that AI techniques such as preference elicita-
tion and active learning are essential to mediate the interac-
tions between end-consumers and the energy market. To re-
alize the smart grid vision of the future, the design of suitable
user interfaces and the use of learning algorithms may ulti-
mately prove to be as important as the economic design of
the energy market or the technical aspects of the smart grid.
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