A Taxonomy of Attribute Scoring Functions

Jenny Schmid and Jürgen Bernard

Table of Content

- Introduction
- Formal Definition of Attribute Scoring Functions
- Literature Research and Methodology
- Taxonomy of Attribute Scoring Functions
- Attribute Scoring Function Creation Tools
- Examples of Attribute Scoring Function
- Discussion
- Conclusion

Used Abbreviations

- ASF(s) = Attribute Scoring Function(s)
- VA = Visual Analytics

Introduction

Motivating Example

Imagine, you want to buy a used car. You want the car to:

- be as cheap as possible
- be as fast as possible
- be neither too old nor too new
- be black, silver or at least blue
- neither have a mileage too high or too low

Different Analysis Goals

- Multi-attribute ranking
- Multi-criteria optimization
- Similarity modeling
- → Focus on non-experts

Problem statement

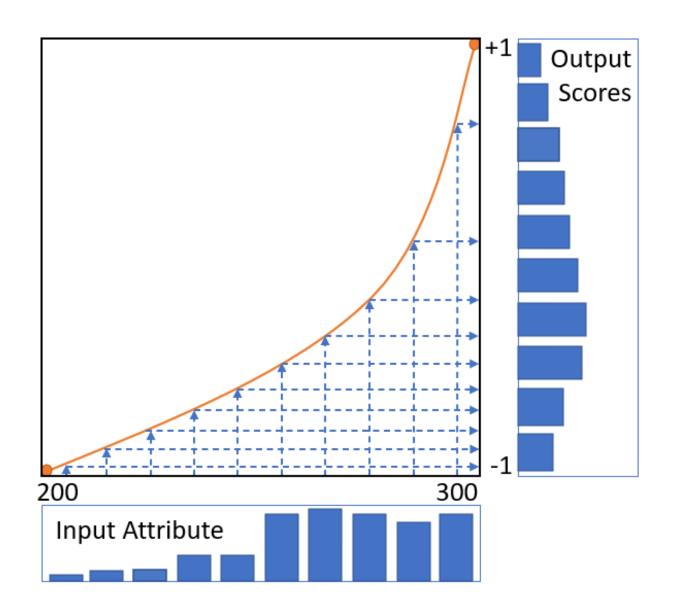
- Non-experts without programming experience want to rank items based on their preferences
- Items have many different attributes
- Users have preferences for some of the attributes
- A ranking of the items should be created based on preferences for some attributes

Motivation

- Distinction between ASFs and ASF creation tools
- 2. Both ASF and ASF creation tools have not yet been described systematically
- 3. Combine mathematical and VA research on ASFs
- 4. Investigate the interactive creation of ASFs
- 5. Support non-expert users in the interactive creation of ASFs

Our Contribution

- A hierarchical taxonomy of ASFs
- A tabular overview of ASF creation tools


Formal Definition of Attribute Scoring Functions

What is an Attribute Scoring Function?

- An ASF is a transformation of attribute values (the input) into scores (the output) that carry information about user preferences
- A score is a numerical value in a predefined range e.g. [0 ..1]
- A score carries a valence information such as high values are good
- ASFs must be defined for the entire value domain

Visual Example

E.g. an ASF for the attribute **maximum speed**

Literature Research and Methodology

Criteria for Literature Research

- Two targets: ASFs and tools for the creation of ASF
- For ASFs tools we differentiate between tools with either only a mathematical or a visual analytical fit or both
- For ASFs we differentiate between ASFs for categorical and numerical input attributes
 - The found ASFs were used for the creation of the taxonomy

Result of Literature Research

- We found tools that:
 - support users with programming experience in expressing preferences mathematically
 - have an inspiring VA approach to define attribute transformations interactively but are not used for ASFs
 - contain a VA component and support users to create ASFs interactively

Result of Literature Research

	Categ.			Numerical					
	Score Assignment	Equidistant	Non-Equidistant	Linear	Non-Linear	Continuous	Discontinuous	Quantile-based	
Attribute Numerifica-			X						
tion [JFJJ08]									
LineUp: Data Mapping Editor				X		X			
[GLG*13]									
PAVED [CMMK20]				X					
uRank [dSSV15]	v								
RanKit [KVD*18]		V	v						
ValueChart [CL04]			v					Ī	
Podium [WDC*18]			v						
HDR VolVis [YNCP06]						v			
VolumePro [KG01]						v			

Result of Literature Research

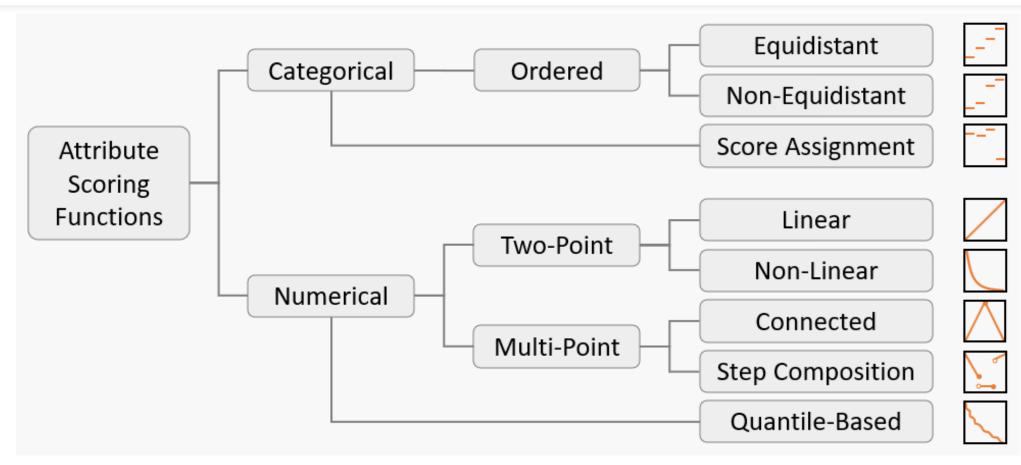
	Categ.			Numerical					
	Score Assignment	Equidistant	Non-Equidistant	Linear	Non-Linear	Continuous	Discontinuous	Quantile-based	
TOPSIS [YH95]	m								
Weighted Sum [MA10]	m								
SMARTER [EB94]		m	m						
SMAA [TF08]		m	m						
LineUp: Scripting Interface				m	m	m	m	m	
[GLG*13]									
Promethee [BV85]				m	m	m			
Transfer Function [CKLG98]				m	m	m			
WWW-NIMBUS [MM00]				m	m	m			
ValueTree [CL04]				m					

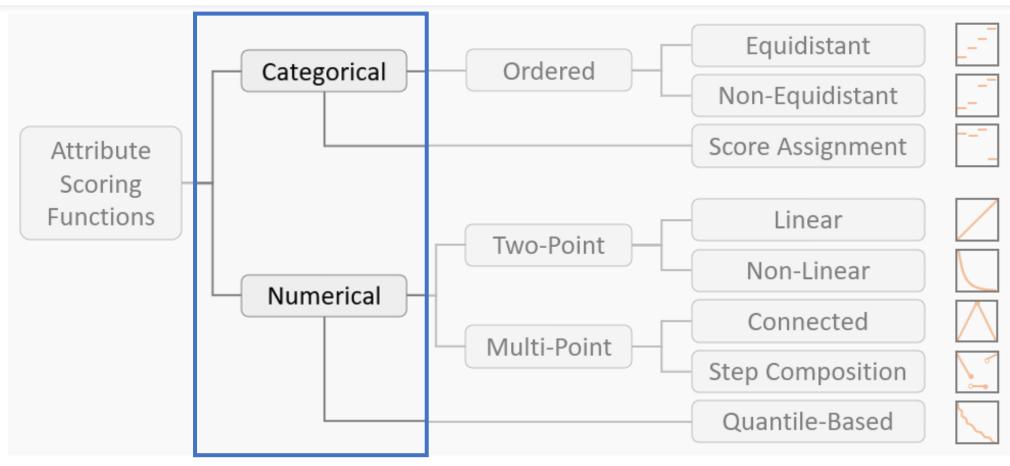
Taxonomy of Attribute Scoring Functions

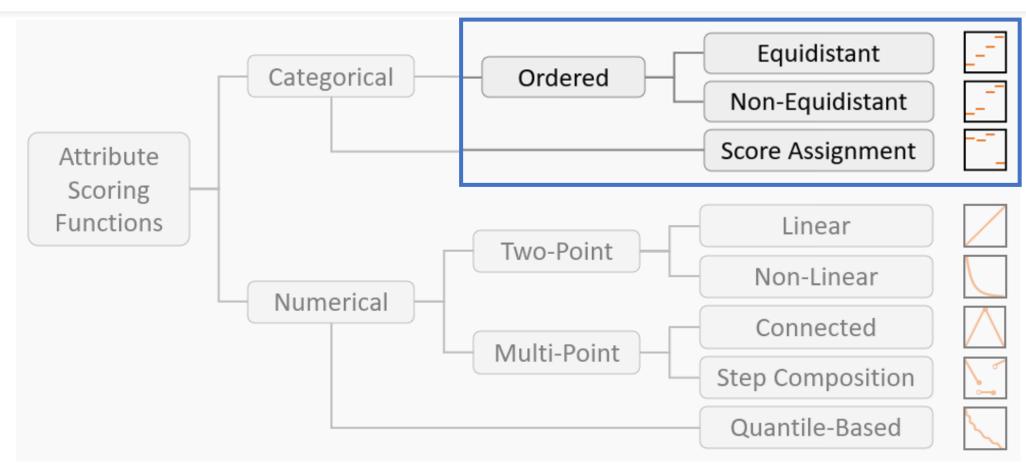
Categorization of ASFs

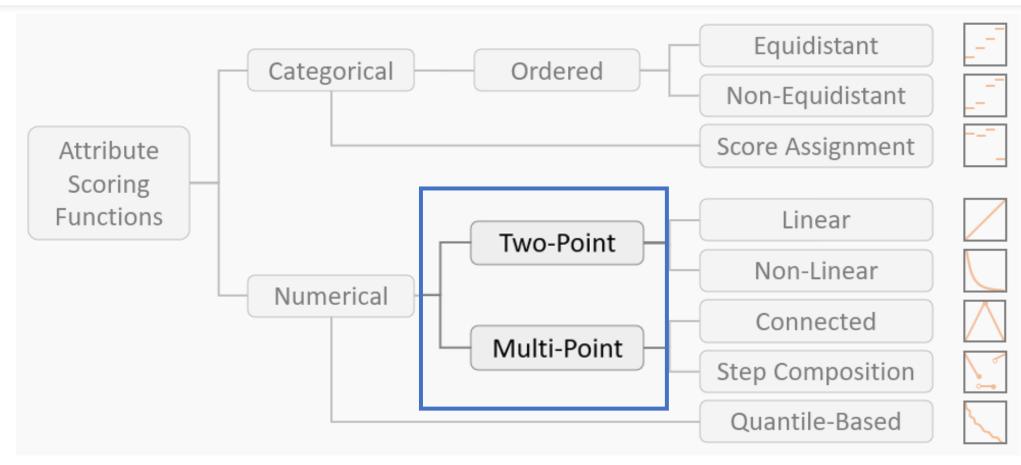
- Strong difference between ASFs for categorical and numerical attributes
- Differentiation between:
 - levels of complexity (in a mathematical sense) for numerical ASFs
 - degree of freedom for creation of categorical ASFs

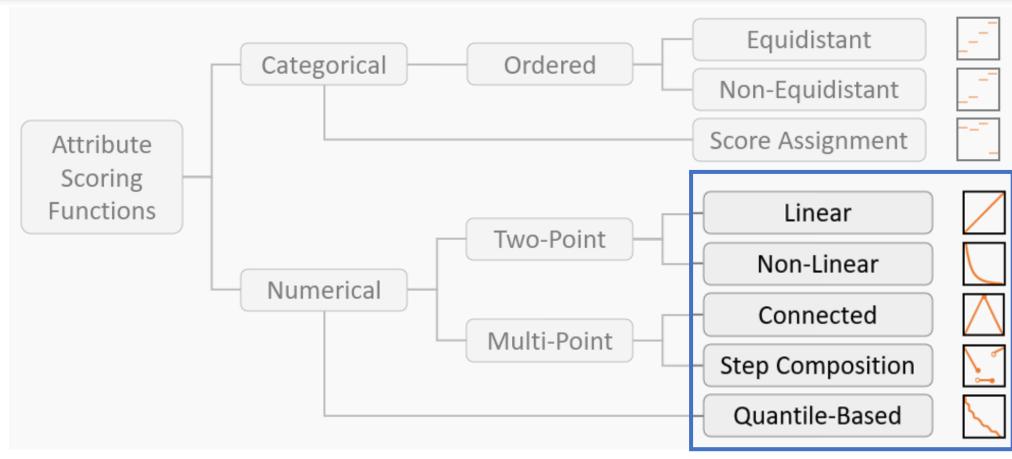
First Version of the Taxonomy

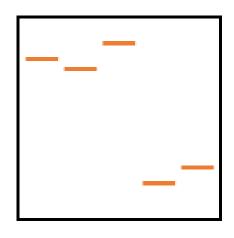

- Top-level differentiation between ASFs for categorical and numerical attributes
- For categorical ASFs:
 - Differentiation between degrees of freedom of parametrization (direct score assignment VS ordered categories)

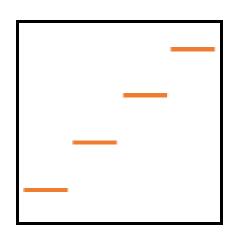

First Version of the Taxonomy


- For numerical ASFs:
 - First, grouping of ASF according to the **number of supporting points** (2 points, 3 points, 4+ points).
 - Second, grouping according to line segment characterization (linear VS non-linear, continuous VS discontinuous)
 - Special case for quantile-based ASFs

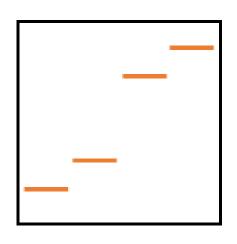

Refined Taxonomy


- Differentiation between categorical and numerical ASFs stayed
- For categorical ASF, no changes
- For numerical ASF:
 - Shift from distinction between number of points (2 point, 3 point, 4+ points) to a broader distinction between 2 points and multi-point
 - Differentiation between linear VS non-linear and continuous VS noncontinuous stayed
 - Special case for quantile-based ASFs stayed

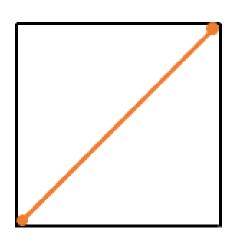



Examples of Attribute Scoring Functions

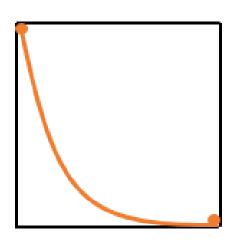
Categorical, Score Assignment


- User assigns a score to every category
- Real world example: Assign scores to different car models, car models cannot be compared to each other
- Examples of tools that support this function with a VA approach: None so far

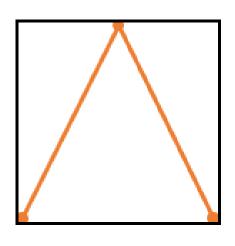
Categorical, Equidistant


- User generates an order of categories, the distances between categories are equal
- Real world example: Order car colors according to preferences, differences between colors are not quantifiable
- Examples of tools that support this function with a VA approach: Podium

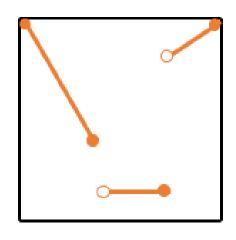
Categorical, Non-Equidistant


- User generates an order of categories, the distances between categories are not equal
- Real world example: Order car brands according to preferences where differences between brands are quantifiable
- Examples of tools that support this function with a VA approach: None so far

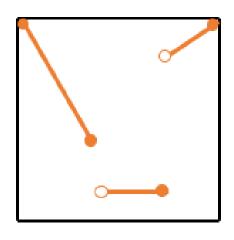
Numerical, Two-Point, Linear


- Mathematical examples are min-max or max-min normalization
- Real world example: Find a car as fast as possible
- Examples of tools that support this function with a VA approach: LineUp and PAVED

Numerical, Two-Point, Non-Linear


- Mathematical examples are logarithmic or exponential functions
- Real world example: ??
- Examples of tools that support this function with a VA approach: None so far

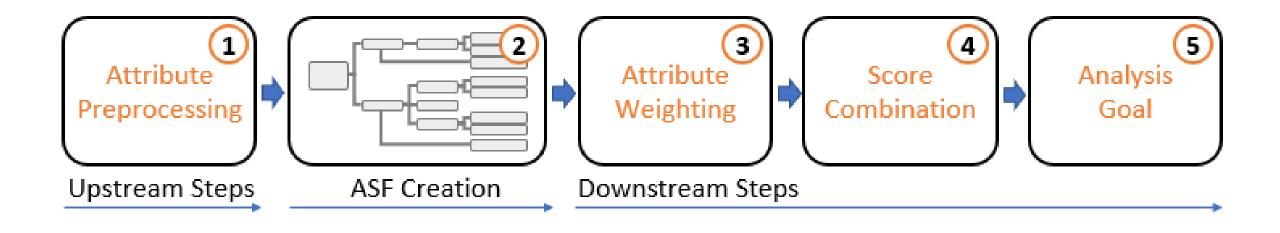
Numerical, Multi-Point, Continuous


- Mathematical examples are the absolute value function
- Real world example: Find a car that is neither too old nor too new
- Examples of tools that support this function with a VA approach: LineUp (up to a certain number of points)

Numerical, Multi-Point, Discontinuous

- Mathematical examples are step functions
- Real world example: Find a car that has an engine size below certain thresholds
- Examples of tools that support this function with a VA approach: None so far

Numerical, Quantile-Based



- Based on quantile normalization
- Can be used for data with outliers
- Examples of tools that support this function with a VA approach: None so far

Discussion

VA Workflow

Attribute Scoring is just one step in the whole process

Future Work

- Design visual interfaces for the creation of ASFs
- Address the weighting of attributes
- Implement a combination of multiple attribute scores to create a final ranking